
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021 1

Hysteresis Modeling of Robotic Catheters based on
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Abstract—Catheters are increasingly being used to tackle
problems in the cardiovascular system. However, positioning
precision of the catheter tip is negatively affected by hysteresis.
To ensure tissue damage due to imprecise positioning is avoided,
hysteresis is to be understood and compensated for. This work
investigates the feasibility to model hysteresis with a Long Short-
Term Memory (LSTM) network. A bench-top setup containing
a catheter distal segment was developed for model evaluation.
The LSTM was first tested using four groups of test datasets
containing diverse patterns. To compare with the LSTM, a
Deadband Rate-Dependent Prandtl-Ishlinskii (DRDPI) model and
a Support Vector Regression (SVR) model were established. The
results demonstrated that the LSTM is capable of predicting
the tip bending angle with sub-degree precision. The LSTM
outperformed the DRDPI model and the SVR model by 60.1%
and 36.0%, respectively, in arbitrarily varying signals. Next, the
LSTM was further validated in a 3D reconstruction experiment
using Forward-Looking Optical Coherence Tomography (FL-
OCT). The results revealed that the LSTM was able to accurately
reconstruct the environment with a reconstruction error below
0.25 mm. Overall, the proposed LSTM enabled precise free-space
control of a robotic catheter in the presence of severe hysteresis.
The LSTM predicted the catheter tip response precisely based on
proximal input pressure, minimizing the need to install sensors
at the catheter tip for localization.

Index Terms—coronary artery disease, robotic catheter, hys-
teresis, modeling, LSTM, pneumatic artificial muscle.

I. INTRODUCTION

CORONARY artery disease (CAD) is one of the most
prevalent forms of heart disease. One-third of deaths

over 35 years old were caused by CAD [1]. CAD reduces
blood flow to the heart muscle because of plaque buildup
in the coronary arteries. If left untreated, CAD may cause
chest pain, unusual fatigue, and even sudden death [2]. A
common procedure for treating CAD patients is Percutaneous
Coronary Intervention (PCI), which is less invasive than surg-
eries. During PCI procedure, catheters are steered to recanalize
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the occlusion. Due to the tortuosity of the aorta, the fragile
and deformable nature of the vessels as well as heartbeat,
good maneuverability and controllability of the catheters are
imperative. Robotic catheters, which can achieve accurate
and high-dexterity control compared to conventional manual
catheters, emerged to address these demands [3].

Robotic catheters can be operated based on various working
principles [4]. Cable-driven technology is one of the most
popular driving principles for robotic catheters. The cables,
which are routed over the entire length of the catheter, undergo
quite some friction with their guiding tubes. Consequently,
reaching a high bandwidth is generally difficult. This hinders
the deployment of the cable-driven technology in scenarios
in which good responsiveness is desirable. From the 1950s
onwards, Pneumatic Artificial Muscle (PAM) became popular
for many applications due to its high operation bandwidth, easy
fabrication, and low-cost [5]. PAMs also show good promise
for being used in interventional instruments, in which precise
maneuvers are required [6]. Therefore, this paper focuses on
catheter actuation with embedded PAMs.

Whether actuated by cables or by PAMs, precise control of
catheters or, in a broad sense, flexible surgical robots is chal-
lenging. With hysteresis being a primary source of imprecision,
hysteresis establishes a complex non-linear multi-valued rela-
tion between input commands and the response of the catheter
distal tip. This multi-valued relation complicates navigation
and results in inaccurate manipulation and positioning of the
catheter tip. Inadequate positioning of the relatively acute tip
could induce vessel wall damage or thrombus creation. To
solve this issue, several methods have been explored in the past
(Table I). The use of external sensors as feedback to implement
a closed-loop control was presented in [7], [12]. However,
mounting sensors at the distal end is challenging due to spatial
restrictions and sterilization requirements [8]. Some previous
research also demonstrated the feasibility to use imaging
techniques as feedback to minimize hysteresis [9], [10]. Baek
et al. further integrated these imaging-based methods with
kinematic models [11]. Amongst others, analytic models for
identifying hysteresis is one of the most popular research
fields ([17] - [19]). An open-loop controller could be designed
based on the inversion of the identified models. Nevertheless,
analytic models require a large number of parameters which
would lead to a cumbersome identification process. It’s worth
noting that, except for [19], all the above-mentioned research
tackled hysteresis in cable-driven systems, while the study on
hysteresis identification in fluidics-driven systems was scarce.

Deep learning techniques have recently gained interest as
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Table I
METHODS TO MINIMIZE HYSTERESIS IN FLEXIBLE SURGICAL ROBOTS FROM PREVIOUS LITERATURE

Authors and publication year Device Actuation/Transmission Principle Methods
Bardou et al., 2012 [7] Endoscope Cable-Driven (CD) Feedback from Electromagnetic (EM) sensor
Cabras et al., 2017 [9] Endoscope CD Locating catheter tip using imaging modalities

Reilink et al., 2013 [10] Endoscope CD Locating catheter tip using imaging modalities
Baek et al., 2020 [11] Multi-arm Flexible Surgical Robot Tendon-sheath mechanism (TSM) Computer vision + kinematic model
Do et al., 2014 [17] Endoscope TSM Bouc–Wen model

Omisore et al., 2018 [18] Cardiovascular Catheter CD Adaptive Backlash Model
Legrand et al., 2020 [19] Fetoscope Mckibben muscle Generalized Prandtl-Ishlinskii Model

Xu et al., 2017 [20] Serpentine Manipulator TSM Machine learning (regression)
Porto et al., 2019 [8] Endoscope CD Machine learning + Inverse kinematic Model

they allow to avoid intricate identification processes by training
an artificial neural network. Up to now, few works have
attempted to use machine or deep learning for hysteresis
modeling. Xu et al. [20] employed regression methods to
learn the inverse kinematics model of a serpentine surgical
manipulator. Porto et al. [8] used machine learning to produce
position control of a flexible surgical robot. Both works dealt
with cable-driven robots, and adopted traditional machine
learning methods but did not take benefit of recent advances in
deep learning. Several researchers used various deep learning
approaches to model force hysteresis targeting generic [13],
[16] and medical applications [14], [15]. In this work we tackle
hysteresis in positioning tasks, whereas force tasks - as de-
scribed in [13]-[16] form the topic of furher investigations and
is out of the scope of this work. In this paper, we propose to
use a Long Short-Term Memory (LSTM) network to model the
hysteresis in a catheter system. It is shown that the proposed
method: 1) is able to predict the catheter distal response merely
based on proximal input commands without including sensory
feedback; 2) has a high modeling accuracy compared to other
existing analytic models and machine learning models; 3) does
not require a large amount of data and has a fast training
procedure. The LSTM allows catheters to be steered precisely
during endovascular interventions. A further contribution is
that we use the developed model together with OCT-based
distance sensing to reconstruct a 3D artificial environment.
The reconstruction error is analyzed and discussed in detail
and directions for further work are provided. This paper is
structured as follows: Section II describes the structure of the
LSTM as well as an experimental setup that was used for data
collection and algorithm validation. Section III introduces the
designed experiments aimed for validating the performance of
the LSTM. The experimental results and related discussions
are presented as well in this section. Section IV concludes the
work and proposes some future work on catheter control.

II. METHODS

A. Long Short-Term Memory Network

A system is said to exhibit hysteresis if it has a sort of
memory. This means that the output at a certain moment is
not only determined by the corresponding input but also by
the past inputs [22].

It happens that an LSTM was proposed as a tool to process
sequential information and take historical information into
account [23]. It is therefore not so illogical to consider the
use of LSTM to model hysteretic behavior.
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(t−1) + bf )

i(t) = σ(Wip
(t) + Uih

(t−1) + bi)
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LSTM can be viewed as a stack of LSTM cells that contain a
number of units in an LSTM cell (see Fig. 1). Each LSTM cell
is equipped with an input gate, an output gate, and a forget
gate that control the information flow. The information in a
unit is processed following (1) [23]. In (1), p(t) is the input
pressure to a Pneumatic Artificial Muscle (PAM) at time t. The
variable σ is the sigmoid function with an output range of [0,1].
It regulates the percentage of information flows through each
gate. Another activation function is the tanh, whose outputs
range from [-1,1]. The forget gate f determines which memory
in the previous cell state c(t−1) is retained. The input gate i
and the input modulation gate c̃ are combined to update the
cell state. A new cell state c(t) is created afterwards. The cell
state c stores selective information that the LSTM processes
all along, thus a long-term memory in the LSTM can be
established. The output gate o works as a filter. It regulates
which part of information from the new cell state c(t) is output
and transferred to the hidden state h(t). The matrix W , U and
b, with different subscripts, represent the weights and biases in
each gate. These gates keep track of the dependencies between
the elements in the input sequence.

B. Experimental Setup

In order to collect data for training and testing the LSTM, a
bench-top experimental setup was built. A schematic diagram
of this setup is illustrated in Fig. 2. This setup contains a
one degree-of-freedom (DOF) unidirectional catheter distal
segment with an embedded PAM (Fig. 2). The catheter is
fabricated out of Nitinol using metal laser cutting technology
and has a diameter of 4.4 mm. The catheter diameter will be
minimized in the future for the PCI. The custom-made artificial
muscle, which is made up of a bladder, an uninflatable tube,
braids and ferrules, is used to actuate the catheter. This artificial
muscle has an initial diameter of 2.1 mm and a length of 129
mm in undeflected condition. By increasing the pressure, the
muscle contracts and applies, through a steer cable that is
attached off-centered at the catheter tip, a bending moment
on the catheter tip. In order to accurately control the input
pressure, the pressure is fed by an air supply, via a propor-
tional pressure valve (Festo, Germany) to the artificial muscle
in cascade (Fig. 2). The proportional valve receives control
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Figure 1. Left: a stacked 2-layer LSTM that consists of multiple LSTM cells, is unrolled into multiple time steps. In this work, LSTM cell is comprised of
64 neurons. A fully connected layer is added after the LSTM cell at time t. Right: each LSTM unit has three gates, i.e., input gate i, output gate o, and forget
gate f that regulate information flow according to (1). A window size of 50 is used to incorporate the input pressure p that was applied in the last 50 time
steps. All this information is used to predict the future bending angle θ.
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Figure 2. A PAM-driven catheter segment is controlled by a proportional
pneumatic valve, which receives a command signal from a PC through a NI®

CompactRIO system. The resulting catheter tip bending angle is captured by
a laser sensor. A ROS-based GUI is created for pressure control and data
collection.
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Figure 3. The catheter tip displacement d
′

captured by the laser distance
sensor is converted to bending angle θ using (2) - (4) based on a constant
curvature model [21] assumption.

signals from an analog output module NI-9263 (NI, Texas,
USA). A pressure sensor (21Yseries, Keller, Switzerland) is
installed in series with the above-mentioned circuit in order
to measure the pressure value. A laser photoelectric sensor
(OADM 12I6460/S35A, Baumer Group, Switzerland) is used
to measure the distance s (unit: mm) from the sensor to
the catheter tip with a sampling frequency of 250 Hz. The
measured voltage output U (unit: V) from the laser sensor can
be converted to the catheter tip bending angle θ (unit: deg)
using following relation:

si = mUi + n (2)

d
′

i = max(s1, s2, · · · , sN )− si (3)

θi =
2 · d′

i · L
H2 + d

′
i
2 ·

180

π
(4)

In (2) - (4), subscript i indicates the i-th sample in a group
and the N represents the number of samples in a data group.
The voltage U that is measured by the laser photoelectric
sensor is proportional to the distance s to the measured object,
thus the m = 4.05 (mm/V) and n = 29.36 (mm) in (2) was
identified only once prior to data collection. The maximum
distance between the sensor and the catheter tip is reached
when the catheter is straight, while the minimum distance is
reached when the maximum pressure is given to the catheter.
Referencing the straight configuration as zero displacement,
then the displacement of catheter tip d

′
can be calculated

by subtracting the measured distance s from the maximum
distance max(s1, s2, · · · , sN ) between the catheter tip and the
laser sensor as expressed in (3). Afterwards, as shown in
Fig. 3, the catheter bending angle θ can be obtained based
on a constant curvature model [21] assumption, in which the
gravitational and inertial forces of the catheter segment could
be assumed to be negligible. The data from the distance sensor
is collected by an Arduino microcontroller, and then sent back
to the PC via a Robot Operating System (ROS) topic. A
Graphical User Interface (GUI) is created in ROS to facilitate
the users to switch among different excitation signals which
are detailed in Section II-C.

C. Training Data Acquisition

In order to provide the LSTM with data containing diverse
excitation patterns, descending sinusoidal pressure with zero
baseline described in (5) and with non-zero baseline described
in (6) were sent to the setup to generate multi-loop hysteresis
(Fig. 4).

p1(t) = Ae−τt(sin(2πft− π

2
) + 1) [bar] (5)

p2(t) = Ae−τt(sin(2πft− π

2
)) +A [bar] (6)

The amplitude A of both signals is set to 1.5 to achieve a
maximum amplitude of 3 bars. In (5) and (6), the variable f is
the excitation frequency in Hz. Input frequencies up to 1 Hz
are investigated in this work. Hysteresis behavior depends on
both the input frequency and the amplitude of the excitation
signal [25], different excitation frequencies are included in the
training data, namely the frequencies of the excitation signal
are set to 0.2, 0.4, 0.6 and 0.8 in the training data set. The
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Figure 4. The training data are collected from the experimental setup: bending
angle (deg) are visualized as a function of the input pressures (bar): (Output1):
4 groups of data with zero baseline are collected based on combinations of
f = 0.2, 0.4, 0.6, 0.8 and time constant τ = 0.15 following (5); (Output2):
4 groups of data with non-zero baseline are collected following (6) based on
the same parameters as in output 1. Thick lines represent the major hysteresis
loop with maximum excitation, while thinner ones indicate the minor loops.

time constant τ was chosen with only one value τ = 0.15 to
generate multi-loop hysteresis.

Two types of training data (bending angle - pressure) featur-
ing major and minor loops were obtained as shown in Fig. 4.
In total 26798 samples were acquired in the training data set.
The training data reveals widening hysteresis loops with raising
excitation frequencies. One can also observe deadbands at the
bottom of the loops (Fig. 4). It is noteworthy that the hysteresis
does not only come from the PAM, but also due to friction
from e.g. relative movements of the steer cable and NiTi tube
during bending, the compressibility of air, the compliance of
the pneumatic tubes, the nonlinear behaviour of the employed
material (Nitinol) and of the valves that were used. All these
phenomena contribute to the resulting asymmetric, saturated,
rate-dependent hysteresis behavior.

D. Hyperparameters of the LSTM and Network Training

A 2-layer stacked LSTM (see Fig. 1) was adopted. Ac-
cording to a previous pilot study [24], a window size equal
to 50 was shown a good performance while maintaining a
low computational cost. Therefore, the input pressure were
segmented into a window size of 50. In other words, the
sequential pressure data p(t−49),p(t−48),...p(t) were entered
into the LSTM to predict one bending angle θ(t). Zeros were
padded on the left of the input sequence for predicting the first
49 bending angles. A fully connected layer (input dimensions
= 64, output dimension =1) was added after the last LSTM
cell. To increase the learning efficacy, all the training data
were normalized between [-1,1] to match the range of the
activation function in (1). The hyperparameters of the LSTM
are listed in Table II. The LSTM is simple and fast with
only 2 hidden layers and 64 neurons per layer. These two
hyperparameters were chosen and tested empirically, as adding
more layers or neurons did not only led to worse fitting, but

also increased the computational cost and the needed training
time. The total number of trainable parameters is 50497. The
network was implemented in Pytorch, an open source machine
learning framework. The training was performed using an 4
GB NVIDIA CUDA-capable GPU. The LSTM was trained for
50 epochs and the whole training time was around 10 minutes.

E. Modeling Evaluation Methods

Three metrics i.e. the Maximum Absolute Error (MAE),
the Root Mean Square Error (RMSE) and the Normalized
Root Mean Square Error (NRMSE) are used to quantitatively
evaluate the model performance in this paper. The MAE that
is computed following (7) measures the maximum absolute
difference between the predicted bending angles and ground
truth among all the samples:

MAE = max
{∣∣∣θ̂i − θi∣∣∣} , i = 1, 2, ..., N (7)

N is the number of sample points in each group of test
data. The RMSE following (8) calculates the square root of
the square difference between the predicted bending angles
and the ground truth.

RMSE =

√∑N
i=1(θ̂i − θi)2

N
, i = 1, 2, ..., N (8)

The NRMSE relates the RMSE to the observed range of the
variables, and it is defined as:

NRMSE =
RMSE

θmax − θmin
(9)

III. EXPERIMENTS AND RESULTS

A. Preliminary Evaluation of the LSTM

In the preliminary evaluation, a well-trained LSTM was
tested on four types of signals (see Fig. 5). The LSTM, similar
to other neural networks, consists of a huge amount of weights
and biases that are distributed in each layer. The output of the
LSTM is derived by multiplying the inputs with the embedded
weights and biases. Therefore, the experiments in this section
was merely carried out once since a LSTM would predict the
same results if the input remains the same.

A state-of-the-art analytic model called Deadband Rate-
Dependent Prandtl-Ishlinskii (DRDPI) model proposed in [25]
was established for comparison to the LSTM. The DRDPI
model is a sophisticated and practical model that takes into
account the impact of frequency on the pattern of the hystere-
sis. In addition, deadband operators in this model allow it to
model asymmetric hysteresis as well as saturation-exhibiting
behaviour that appears at the bottom of the hysteresis loops
(see Fig. 4). Therefore, the DRDPI model is fully adapted to
model the hysteresis originating from the entire PAM-driven
catheter system. The parameters of the DRDPI model were
identified using a genetic optimization algorithm in MATLAB®

Toolbox. The training data remained the same as for the LSTM
(see Fig. 4). The identification process was performed on CPU
(Intel Core i7 CPU @ 2.80GHz with a RAM of 8GB) as
there was no wide-spread library for a GPU-based training.
The whole identification procedure of the DRDPI model took
around 3.5 hours. A machine learning model i.e. Support
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Table II
HYPERPARAMETERS FOR THE LSTM NETWORK

Number of
hidden layers

Number of neurons
per cell

Activation
functions Optimizer Loss function Training-subset

/Validation ratio Batch size Learning Rate Epoches

LSTM 2 64, 64 Tanh/Sigmoid Adam L2 Loss 70%30% 16 0.001 50

0.0

8.57.5

8.0

0.0

9.57.5

8.0

(a) Descending sine wave differing from training data (f=0.7, τ=0.12)

0.0
7.56.5

2.0

0.0
7.56.5

2.0

(b) Attenuated down-chirp sine wave with shifted baseline (τ=0.1, c=-0.1)

0.0
6.55.0

2.0

0.0
5.54.5

2.0

(c) Ascending up-chirp sine wave with zero baseline (f=0.3, τ=0.05, c=0.15)

0.0
3.00.5

2.5

0.0
3.00.5

2.5

(d) Arbitrarily varying signal with plateaus
Figure 5. The modeling performance of the LSTM (blue), SVR (brown) and DRDPI model (green) on four types of test signals. Modeling errors of the LSTM
(black), SVR (magenta) and the DRDPI model (orange) are also visualised on the same plot for comparison.

Table III
QUANTITATIVE PERFORMANCE OF THE LSTM, THE SVR AND THE DRDPI MODEL ON FOUR GROUPS OF TEST SETS.

Modeling
Methods

Descending sine wave
differing from training data

Attenuated down-chirp
sine wave with shifted baseline

Ascending up-chirp sine
wave with zero baseline

Arbitrarily varying
signal with plateaus

RMSE (deg) MAE (deg) NRMSE RMSE (deg) MAE (deg) NRMSE RMSE (deg) MAE (deg) NRMSE RMSE (deg) MAE (deg) NRMSE
DRDPI 1.40 6.23 4.54% 1.22 2.83 6.28% 1.07 4.28 4.99% 1.48 2.98 6.07%

SVR 0.76 1.83 2.45% 0.80 3.54 4.10% 0.76 1.69 3.56% 0.92 2.01 3.78%
LSTM 0.36 1.23 1.17% 0.82 2.27 4.20% 0.50 1.92 2.34% 0.59 1.93 2.42%

Vector Regression (SVR) was also implemented to enrich the
comparison. The SVR is an expansion of a classical Support
Vector Machine (SVM) from pure classification to regression
tasks. Similar to SVM it is designed for estimation of high
dimensional, nonlinear problems when only a limited number
of samples are available [26]. The SVR model implemented
in this paper was based on [26]. The hyperparameters of the
SVR are chosen as follows: penalty C = 10, kernel = Radial
Basis Function (RBF) kernel, kernel coefficient γ = 0.1, margin
of tolerance ε = 0.1. Parameter C and γ were optimized using
a grid search (C∈{0.001,0.01,0.1,1,10}, γ∈{0.001,0.01,0.1,1})
and a cross-validation method (k=10). The optimization results
of the three models are displayed in Table IV. The rightmost
column represents the mean of the relative change of the
MSE loss in the last 10% of the iterations. Small mean of
relative change indicates that the three models were adequately
converged and the comparison is thus fair.

The pattern of the test signals as well as the modeling results
of the LSTM, the DRDPI model, and the SVR are shown in
Fig. 5 and described in detail as follows:

Table IV
OPTIMIZATION RESULTS OF THREE MODELS

Modeling Methods Iterations Training Loss (deg2) Mean of Relative Change
DRDPI 1000 0.344 0.013%

SVR 100 0.002782 0.708%
LSTM 50 0.00056 0.190%

a): A descending sine wave following (5) with f = 0.7 and
τ = 0.12 differing from the training data was generated, while
the amplitude A = 1.5 remains the same.

The RMSE and the NRMSE of the LSTM are 0.36◦ and
1.17%, respectively. Both metrics outperform those achieved
by the DRDPI model (1.40◦ and 4.54%) and the SVR model.
The error of the LSTM consistently remains under 1.23◦

(MAE) across the whole range, which is even smaller than
the RMSE of the DRDPI model.

b): To test the performance of the LSTM on data with
time-varying frequency, a pressure signal following (10) with
A = 0.9, B = 1.2, f = 0.7, τ = 0.1 and c = -0.1 was
utilized to generate attenuated down-chirp sine wave with non-
zero baseline. The variable c is chirpyness that regulates the
changing rate of frequency over time.
p(t) = Ae−τt(sin(2π(f + ct)t− π

2
) + 1) +B [bar] (10)
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Unlike the DRDPI model that can merely model the saturat-
ing area by using a plateau, the LSTM and the SVR is able to
predict a smooth sine-shaped curve when approaching extrema.
This phenomenon can also been observed from other test
signals. Consequently, it leads to lower RMSEs of the LSTM
and the SVR with 0.82◦ and 0.80◦, respectively compared to
the DRDPI with 1.22◦.

c): The third set of test data has an ascending pattern that
is not contained in the training data. Following (11), with A
= 0.6, f = 0.3 , τ = 0.05 and c = 0.15, an ascending up-chirp
sine wave was generated.

p(t) = Ae−τt(sin(2π(f + ct)t− π

2
) + 1) [bar] (11)

The performance of the LSTM advances with growing
frequency, whereas the DRDPI model achieves a similar level
of performance in the first two loops, before it starts to
deteriorate until reaching an MAE of 4.28◦ in the loading
phase of the last loop. Note that the SVR consistenly predicts
wavy lines in deadzones, causing its performance to be 34.2%
worse than the LSTM in terms of the RMSE.

d): Arbitrarily varying signals represent the most general
commands that can take place in practice. It is used to further
explore the potential of the LSTM.

The LSTM shows consistently low prediction errors, regard-
less of the signal patterns, with an RMSE and NRMSE of
0.59◦ and 2.42%, respectively. While the DRDPI also predicts
a quasi-plateau, it can be seen that each plateau happens at a
considerable offset (Fig. 5d), where its MAE of 2.98◦ emerges
on the second plateau. Both the RMSE (0.59◦) and the NRMSE
(2.42%) of the LSTM are 60.1% and 36.0% smaller than the
DRDPI model and the SVR, respectively.

The average inference time of the LSTM for a single point is
approximately 25 ms based on the test data. Table III summa-
rizes and compares the performance of the three models quan-
titatively based upon the three metrics. In terms of NRMSE,
apart from group (b) in which the LSTM is 33.1% better than
the DRDPI model, the LSTM outperforms the DRDPI model
by at least 50% in the other three groups. Moveover, except for
achieving a comparable performance in the ascending up-chirp
sine wave, the LSTM is at least 34.2% better than the SVR.
With the provided experiments, we showcased that the LSTM
is capable to capture dynamic responses of our system which
are – given that our catheter is lightweight and the speeds
are moderate – dominated by the valve dynamics. We believe
that faster motion could be captured also if trained properly.
Overall, the LSTM is able to accurately model the asymmetric,
saturated and rate-dependent hysteresis originating from the
entire catheter system with a sub-degree precision as well as
a lead in performance compared to the DRDPI model and
the SVR. In cardiovascular applications, the required precision
that clinicians indicate as being acceptable is typically in the
order of 1–3 mm [27], which corresponds to 2.09-6.26 degrees
according to (4). Although confirmed in a simplified setting,
the obtained performance of the LSTM (see Table III) shows a
good potential to satisfy the requirements in terms of precision
also in a more realistic clinical setting.
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Figure 6. (a) overview of reconstruction module: 1. distal catheter segment;
2. pneumatic artificial muscle; 3. OCT fiber; 4. reconstruction Object; 5. DC
motor; (b) (up) three patterns distributed in a circular sector of 270◦ (bottom)
cross-section view.

B. 3D Reconstruction Experiment

In a bifurcation lesion, angiography may not be able to
accurately image the carina area because the main vessel
and side branch overlap with each other. As a solution, a
catheter-based forward-looking intravascular ultrasound (FL-
IVUS) could help reconstruct the anatomy of the lesion [28].
In this case, the positioning accuracy of the catheter tip is
very critical otherwise a precise 3D reconstruction can not
be guaranteed. A 3D reconstruction experiment is depicted in
this subsection (Fig. 6). A forward-looking optical coherence
tomography (FL-OCT) fiber is used to simulate the A-mode
FL-IVUS. The experiment is set up to test whether the model-
ing accuracy of the LSTM allows high quality reconstruction
of the environment. Considering that LSTM and SVR both
rely on machine-learning, while DRDPI is analytic and given
superiority of LSTM over SVR it was found more interesting
to compare the performance of the LSTM with the analytic
DRDPI in the following experiment.

The experimental setup is shown in Fig. 2. Apart from the
modules introduced in section II-B, a reconstruction module
is added for this experiment. A hollow spherical cap with
embedded grooves (Fig. 6) is fabricated to serve as a dummy
environment. This cap is positioned in front of the catheter
tip. There are three patterns on this object, and each of them
covers a circular sector of 90◦. The dimensions of the object
as well as the patterns can be seen in Fig. 6. The pattern I and
III have three milled grooves at various distances with respect
to the center axis, while pattern II is a smooth surface without
any grooves. The object is rotated by a DC motor (Maxon
Group, Switzerland) so as to simulate the rotation motion of
the catheter. An OCT fiber (iOCT, OptoMedical Technologies
GmbH, Germany) is attached onto the catheter tip to measure
the front distance to the object by using an A-mode scan. The
acquired raw A-mode images are published on a ROS topic
and processed in Matlab (Fig. 2) using a method introduced in
[29]. A harmonic sinusoidal pressure (A = 2.95 [bar], f = 0.1
Hz) is used to bend the catheter in order to cover the whole
range of the semi spherical cap. The scan object remains still
during one back and forth motion of the catheter, and then
rotates for 15◦ for the next scan until all the three patterns are
scanned. The lateral distance sensor measures the actual tip
bending angle. By combining the bending angle measured by
the laser with the OCT measurement, followed by a conversion
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Figure 7. Results of 3D reconstruction experiment: (a) reconstruction of a hollow spherical-cap object with an OCT scan at every 15◦ using lateral distance
sensor (ground truth, red), LSTM (blue dots) and DRDPI model (green dots); (b) - (c) reconstruction errors of LSTM and DRDPI model respectively represented
in color-coded maps; (d) - (f) middle cross-section (at 45◦) of each pattern showing the planar reconstruction performance of the two models.

Table V
THE RESULTS OF 3D RECONSTRUCTION EXPERIMENT (UNIT: MM, RED: MAX. ERROR, GREEN: MIN. ERROR)

Angle
(◦)

Pattern
I

LSTM DRDPI

Pattern
II

LSTM DRDPI

Pattern
III

LSTM DRDPI
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

0 0.15 0.16 0.54 0.46 0.14 0.16 0.53 0.42 0.24 0.29 0.69 0.57
15 0.18 0.21 0.57 0.46 0.14 0.17 0.52 0.41 0.26 0.30 0.73 0.59
30 0.11 0.13 0.50 0.41 0.19 0.21 0.54 0.45 0.24 0.29 0.73 0.58
45 0.22 0.25 0.58 0.47 0.15 0.19 0.53 0.43 0.26 0.32 0.67 0.56
60 0.18 0.21 0.51 0.44 0.18 0.21 0.56 0.43 0.27 0.31 0.68 0.57
75 0.15 0.21 0.56 0.42 0.14 0.17 0.54 0.41 0.22 0.28 0.64 0.54
90 0.14 0.18 0.52 0.42 0.17 0.19 0.55 0.45 0.24 0.29 0.69 0.57

Overall 0.16 0.04 0.54 0.03 0.16 0.02 0.54 0.01 0.25 0.02 0.69 0.03
p-value 0.002117 0.002021 0.001998

from Polar to Cartesian Coordinate, an approximation of the
ground truth profile of the environment is obtained. This profile
is then compared with the environment that is computed from
the modeled bending angle (LSTM and DRDPI respectively)
and the OCT distance measurement. If the hysteresis were
compensated perfectly, both reconstructions should match. The
reconstruction error is defined as the mean of the Euclidean
distance between the ground truth and the reconstructed points
derived by the two models.

The overall reconstruction performance is shown in Fig. 7a.
A quantitative evaluation can be found in Table V. Figure
7d shows the 45 degree planar reconstruction of pattern I.
One can observe that the LSTM can reconstruct the cross-
section profile with high accuracy (reconstruction error =
0.22 mm, Table V). Both the shape and the location of the
grooves are well-reconstructed except that the reconstructed
curve is slightly stretched at the end with respect to the ground
truth. In contrast, the DRDPI model achieves an acceptable
performance on curve, whereas the locations of the first and
second grooves are reconstructed with a large variation, leading
to a large reconstruction error of 0.58 mm (Table V). In Fig. 7e
and Fig. 7f, the reconstruction performance of the two models
follow a similar trend in Pattern I. The color-coded maps in
Fig.7b and Fig. 7c describe the reconstruction error across all
the patterns. The reconstruction error of the LSTM gradually
rises up until reaching around 1mm when approaching the
edge of the object. Unlike the LSTM, the DRDPI model

has a large reconstruction error around the center axis as it
utilizes deadband operators to model the dead zone of the
hysteresis. After achieving its best performance in the halfway,
its performance degrades again and the reconstruction error
approaches ca. 2 mm. The reason for that is explained as
follows. Unlike the LSTM can track the area near upper turning
point with a smooth sine-shaped curve, the DRDPI model still
use deadband operators i.e. plateaus to model the upper turning
point which lead a large modeling error. As shown in Table III,
the average reconstruction error of the LSTM are 0.16 mm,
0.16 mm and 0.25 mm in pattern I to III. These errors are
70.4%, 70.4%, 63.8% lower than those of the DRDPI model.
To make sure that the difference in results between the two
models are not caused by sampling errors, a Mann-Whitney
U Test is used to compare the LSTM and the DRDPI model.
The null hypothesis H0 that the mean reconstruction errors
of the two models were not statistically different, could be
rejected as a p-value smaller than 0.01 was found in all the
three patterns. The results prove that performance of the LSTM
and the DRDPI model are statistically significantly different.

The reconstruction experiment validate the feasibility that,
with the assistance of the LSTM, a PAM-driven catheter is able
to overcome the complex inherent hysteresis and accurately
reconstruct the anatomical structure with a forward-looking
imaging modalities in intravascular interventions.
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IV. CONCLUSIONS AND FUTURE WORK
To address hysteresis problem in robotic catheters, a LSTM

network is proposed to model the hysteresis. To this end, an
experimental setup containing a one-DOF PAM-driven catheter
segment was developed for model validation. Descending
sinusoidal pressure signals under four frequencies were used
to generate multi-loop hysteresis, which was further used
as training data for the LSTM. The acquired data reveal a
complex pattern namely asymmetric, saturated, rate-dependent
hysteresis, which originate from the entire catheter system
rather than the PAM itself. A DRDPI model and a SVR model
were established for comparison to the LSTM.

The LSTM was first validated on four test signals containing
diverse patterns e.g. chirp signals, arbitrarily varying signals.
The RMSE and MAE of the LSTM remain under 0.82◦, 2.27◦,
respectively across different test signals. The results reveal that
the LSTM performs better than the DRDPI model and the
SVR. Next, the LSTM was further validated through an OCT
reconstruction experiment. The results indicate that the LSTM,
with its good modeling accuracy, is able to reconstruct the
object with errors below 0.25 mm in all of the three patterns,
while the smallest reconstruction error achieved by the DRDPI
model is 0.54 mm.

In general, with the LSTM, the response of the catheter tip
(bending angle) can be predicted with sub-degree precision
solely based on the input commands (the pressure at proximal
end). It demonstrates its robustness when the catheter system
exhibits a complex hysteresis. The proposed method requires
similar amount of training data compared to analytical models
and machine learning methods, and is very fast to characterize.
The LSTM reduces the need to mount a sensor at the distal
tip for localization, which is originally challenging due to
spatial limitation and sterilization requirement. The proposed
LSTM makes it possible to steer robotic catheters with good
precision. We demonstrated this ability in a free space sce-
nario (representing motion in the heart), which could enable
interesting clinical applications such as detailed intra-operative
reconstruction of anatomic lumens or cavities. Although vali-
dated in a relatively simple 1-DOF planar bending system, our
model could be readily extended to 2-DOF spatial bending
with four antagonistic PAMs and four LSTMs identified by
the four PAMs. A single DOF bending in combination with
rotational motion about the catheter’s longitudinal axis could in
fact suffice as well, but in reality the rotational motion would
also need to be trained.

Future work will focus on embedding an LSTM network
in controllers that actually compensate for the hysteresis on
the PAM-driven catheters. Moreover, the proposed LSTM is a
generic method and its generalization ability on other systems
suffering from hysteresis will also be investigated.
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