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IVUS-Based Local Vessel Estimation for Robotic
Intravascular Navigation
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Paolo Fiorini2, Jos Vander Sloten1, and Emmanuel Vander Poorten1

Abstract—Intra-operative local 3D vessel representations have
the potential to significantly decrease the use of contrast agents
and exposure to ionizing radiation during endovascular pro-
cedures, while overcoming the 2D visualization limitation of
fluoroscopic guidance. By fusing intravascular ultrasound (IVUS)
imaging and electromagnetic (EM) pose sensing in a robotic
catheter tip, a real-time local 3D model of the vasculature could
be constructed intra-operatively. This paper proposes the use
of a cylinder model to approximate the vessel geometry near
the catheter tip. An unscented Kalman filter is employed to
robustly estimate the cylinder that best fits IVUS and EM data
while navigating through the vessel. This forms a radiation-free
alternative to conventional radiation-based guidance. Validation
on one in silico and two in vitro models showed median estimation
errors of cylinder radius of 0.14 mm, 0.42 mm and 0.70
mm; cylinder position of 0.45 mm, 1.07 mm and 0.96 mm;
and cylinder orientation of 2.94◦, 4.60◦ and 3.03◦ showing
great potential for helping interventionists preventing harmful
interactions between the instrument tip and the vessel wall.

Index Terms—Computer vision for medical robotics, naviga-
tion assistance, sensor fusion, 3D vessel modelling

I. INTRODUCTION

CARDIOVASCULAR diseases (CVDs) are the primary
cause of death worldwide. In 2016 alone, the number of

CVDs deaths was estimated at 17.9 million, representing 31%
of all global deaths [1]. More specifically, in Europe, CVDs
are responsible for the death of more than 4 million people
yearly, accounting for 45% of all deaths [2]. Endovascular
interventions are routinely used in the treatment of patients
with CVDs. These are minimally invasive procedures with
noted advantages, such as smaller incisions, short recovery
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Fig. 1. Overview of a radiation-free guidance system for catheter naviga-
tion during endovascular interventions. Through fusion of EM tracking and
IVUS-based vessel segmentation, a real-time 3D cylinder model that locally
approximates the vessel geometry is proposed. Based on this knowledge, the
catheter can be steered safely through the vessel.

time, and a decrease of blood loss and pain. Endovascular in-
terventions are typically carried out using catheters, for which
navigation is mostly achieved by manual manipulation at their
proximal end, while resorting to various visual feedback tools
[3]. Fluoroscopy is the most common imaging modality chosen
for visualization during endovascular procedures. Based on X-
rays, fluoroscopy is limited to a two-dimensional (2D) view of
the surgical scene. Contrast agents are frequently injected to
enhance the visualization of the instruments and blood vessels.
Not only are contrast agents nephrotoxic, but also prolonged
X-ray exposure is known to be harmful for both patient and
clinician [3]. Since only 2D visual feedback is available,
the clinician must continuously relate the 2D fluoroscopic
images to a three-dimensional (3D) representation of the
vasculature. In summary, he/she struggles with poor situational
awareness, requiring 2D fluoroscopic images from different
angles [3], [4]. This struggle combined with high procedural
complexity can prompt undesired outcomes. Moreover, the
inherent restricted access to the patient’s anatomy demands
an increased dexterity from the catheter operator to ensure
safe navigation. External guidance imaging or robotics could
improve navigation precision.
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The addition of sensors and adoption of robotic approaches
could effectively improve the operator’s and/or the surgical
robot’s situational awareness and, ultimately, eliminate the
need for fluoroscopy for localizing and navigating the instru-
ment through the vasculature [5]. Various sensing modalities
have been investigated in the literature to localize robotic
instruments and/or to visualize the blood vessel. Examples of
radiation-free sensing include intravascular ultrasound (IVUS)
imaging [6] and electromagnetic (EM) pose sensing [7]. When
embedded in robotic catheters, they allow for spatial localiza-
tion of the catheter tip with respect to the surrounding vessel.
EM sensors (pose in 6-degrees of freedom (DOFs)) are tracked
and localized relative to an external coordinate system. An
IVUS probe provides only local information of a vessel as it
generates single cross-sectional ultrasound (US) images from
within the vessel. Such characteristic largely complicates the
direct use of this imaging modality as a path planning tool.

3D vessel models obtained from pre-operative imaging
could potentially help gain insight into the patient anatomy.
In fact, 3D reconstruction of blood vessels has been achieved
by combining IVUS imaging with other sensing modalities
such as angiography, pre-operative CT and EM tracking. Some
examples are [8], [9], where angiographic projections are
registered with IVUS to create a more detailed model of
the vessel geometry. However, drawbacks of these methods
remain: exposure to radiation (X-rays) and use of contrast
agents, the common assumption of constant speed during
catheter pullback, and the inaccurate estimation of the IVUS
image axial orientation [6].

Recent developments including EM sensing have allowed
for online registration as the catheter navigates through the
vessel [10]. Registration of the EM measurements of the
catheter tip to the pre-operative vessel geometry could in fact
provide accurate spatial localization of IVUS images. How-
ever, in [10], the catheter must first advance deep into the ves-
sel and intra-operative vessel deformation is not accounted for.
Another relevant method [7] uses a Kalman filter to smooth the
EM measurements and stitches consecutive IVUS images to
reconstruct the vessel geometry. Even though this method does
not rely on prior registration, it also does not provide any in-
formation regarding the vessel geometry ahead of the catheter.
Another relevant framework is Simultaneous Catheter and
Environment Modeling (SCEM) [11], which initially proposed
to fuse IVUS and EM tracking to reconstruct blood vessels.
SCEM was expanded to SCEM+ [12] introducing real-time
3D vessel reconstruction via a nonlinear optimization based
on pre-operative data. The real-time operation of SCEM+
relies on the incorporation of pre-operative information and
both SCEM and SCEM+ rely on accurate pre-registration
between EM and CT data. Zhao et al. [13] introduces hereto
a registration-free expansion to SCEM+, describing as well
periodic vessel deformation from the cardiac cycle. Despite
this progress, the latest version of SCEM+ still significantly
depends on a static pre-operative geometry, which requires
additional and avoidable contrast agent injection and exposure
to ionizing radiation. Also, the reported vessel reconstruction
errors are only determined after full catheter pullback and/or
insertion. The vessel reconstruction accuracy and EM-CT

automatic registration performance are thus not evaluated over
time (real-time operation).

In this paper, a reliable local 3D vasculature representation
from local sensing (Fig. 1) is investigated and conceived to
improve intra-operative catheter navigation and in-situ situa-
tional awareness, without relying on X-ray imaging, contrast
agents and pre-operative data. A local cylinder model, updated
at up to 40 Hz, is introduced as a simple geometry able
to approximate important features of a blood vessel in the
vicinity of the catheter tip. An estimation algorithm/module
is proposed to infer the parameters of the cylinder in real-
time solely by relying on IVUS images and EM tracking. An
unscented Kalman filter (UKF) is implemented for estimating
the best fitting cylinder model. Finally, the estimation algo-
rithm and obtained local cylinder models are validated in both
a simulation environment and in two blood vessel phantoms.

The paper is organized as follows: Section II gives an
overview of the robotic catheter and the embedded sensors.
Section III describes the cylinder model and its state space
representations. Next, section IV introduces the proposed
estimation algorithm (UKF). The experimental setup and sim-
ulation environment are reported in section V. The proposed
approach validation results and discussion are included in
section VI. Finally, in section VII, conclusions are drawn and
directions for future work are given.

II. ROBOTIC CATHETER AND ITS IVUS AND EM SENSORS

Fig. 1 illustrates the hereby proposed cylinder model and its
use in a clinical scenario. This work aims at facilitating a larger
planning horizon to enhance catheter navigation, by providing
a 3D model of the environment surrounding the catheter tip
and by only using IVUS and EM sensing.

In order to gather the needed measurements from IVUS and
EM tracking, a robotic catheter with a distal active segment
was designed and built (see Fig. 1). The catheter has four
McKibben muscles integrated, allowing bi-directional 2-DOFs
bending over a bending segment of 80 mm at the distal tip. The
design process and modelling of the robotic catheter’s actuated
segment are detailed in [14]. One EM Aurora sensor (Northern
Digital Inc., Waterloo, Ontario, Canada) is embedded in the
catheter at the steerable segment tip. Similarly, a single IVUS
Visions PV .035 probe (Philips Healthcare, Andover, Mas-
sachusetts, USA) is located at the tip of the steerable segment.
Note that the sensory data used in the estimation algorithm is
relative to the robotic catheter tip.

A. EM and IVUS sensor measurements

When placed in a known electromagnetic field, the EM
sensor 6-DOFs pose is measured and, consequently, the pose
of the IVUS probe and the robotic catheter tip can be derived.
The IVUS probe pose is represented by the homogeneous
transformation matrix wT

i, describing the pose of the IVUS
frame {i} in the world frame {w}. The IVUS probe pose
is determined from the EM sensor pose wT

e and from the
constant pose eT i of the IVUS probe relative to the EM sensor
(known by the catheter design). Similarly, one can compute the
pose of the catheter tip with respect to the world frame {w}
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wT
tip, also with a fixed transformation matrix eT

tip known
from catheter design. These relations are summarized as:

wT
i = wT

e
eT

i (1)

wT
tip = wT

e
eT

tip (2)

Standard registration techniques can be adopted to derive eT
i

and eT
tip, while wT

e is measured by the EM system.
The IVUS measurements show a cross-sectional 2D US

view of the vessel at the level of the IVUS probe. Since this
sensor is aligned with the longitudinal axis of the catheter, the
cross-section is thus perpendicular to this longitudinal axis
and is visible in the xy-plane of the IVUS frame {i}, rigidly
attached to the center of the IVUS probe (see Fig. 1 and 2).
The contour of the vessel lumen can be extracted from the
IVUS slice and is represented by a set of M consecutive 2D
points j

ic spaced every 2π
M−1 radians:

j
ic =

[
j
i cx

j
i cy
]T

(j = 1, . . . ,M) (3)

In this work, as described in [7], a stable and automatic method
is adopted to extract the vessel lumen contour from the IVUS
images and consequently the points described in (3).

III. CYLINDER MODELLING

The vessel geometry is locally approximated with a cylinder
of infinite height, in the vicinity of the catheter tip. This cylin-
der is characterized by a 5-dimensional state vector including
the cylinder radius r and the cylinder pose, which consists of
a 2-DOFs position and a 2-DOFs orientation. It is important to
note that both the position and the orientation of the cylinder
model are expressed in the IVUS frame {i} (Fig. 2). While the
position vector ip is defined so that it always lies on the xy
plane of frame {i}, the orientation of the cylinder (2-DOFs)
can be defined either by a unit vector id or by a pair of
angles (θ, φ). These two possible representations express the
non-minimal (4) and the minimal (5) representations of the
cylinder state, respectively, as in:

x(id) =
[
ip
T

id
T r

]T
=
[
ipx ipy idx idy idz r

]T
(4)

x(θ,φ) =
[
ip
T θ φ r

]T
=
[
ipx ipy θ φ r

]T
(5)

where θ ∈ [0, π] and φ ∈ [0, 2π).
When the cylinder state is encoded by the non-minimal

representation id, this is a singularity-free representation.
However, a constraint on the state is introduced, which math-
ematical operations must respect. Alternatively, the minimal
representation (θ, φ) is free of constraints and mathematical
operations are easier to formulate. However, a singularity is
intrinsically associated when the catheter tip is aligned with
the longitudinal axis of the vessel (θ = 0◦). In order to limit
the occurrence of singularities, the range of θ and φ can be
conveniently defined so that θ = 0◦ is as far as possible
from the nominal cylinder pose. The nominal cylinder pose
is defined so the IVUS longitudinal z axis is parallel to the
cylinder axis for θ = 90◦ and φ = 90◦. Fig. 2 illustrates how

1

Fig. 2. Cylinder representation in the 6-DOFs frame {cyl}, in which the x
axis corresponds to the direction id in the IVUS frame {i}. The cylinder
2-DOFs orientation can be represented in {i} 1 either by a unit vector id
or by a pair of angles θ ∈ [0, π] and φ ∈ [0, 2π).

the orientation of the cylinder is described by the minimal and
the non-minimal representations. The same figure shows how
a 6-DOFs frame {cyl} attached to the cylinder, and expressed
with respect to {i}, is defined even though its pose retains
4-DOFs. The pose iT

cyl of the frame {cyl} expressed in
frame {i} is given by:

iT
cyl=

[
iR

cyl
it
cyl

01×3 1

]
=


cos θ − sin θ 0 ipx

sin θ cosφ cos θ cosφ − sinφ ipy
sin θ sinφ cos θ sinφ cosφ 0

0 0 0 1

 (6)

Depending on the application, one state representation can be
chosen over the other, which is further discussed in section IV,
alongside with the need for frame {cyl}. Note that both state
representations are related as follows:

id =

idx
idy
idz

 =

 cos θ
sin θ cosφ
sin θ sinφ

 (7)

θ = arccos
(
idx
)
, φ = atan2

(
idz, idy

)
(8)

It is noteworthy that the aforementioned cylinder state repre-
sentations cannot be directly observed from the EM and IVUS
sensor measurements. In this paper, the state is inferred from
a plurality of subsequent sensor measurements, while taking
into account the noise of the IVUS and EM measurements
and the uncertainty of the system evolution over time. Further
note that due to the axial symmetry inherent to using a cylinder
model, IVUS measurements can be ambiguous, as illustrated
in Fig. 3. Consequently, this ambiguity largely complicates the
cylinder orientation estimation.

Lastly, it is important to discuss the consequences of the
presence of side branches and bifurcations. These locally
distort the axisymmetric geometry of the vessel and so, close
to these sites, locally approximating the vessel by a cylinder
model becomes less valid. Despite future work being planned
to address local modeling at vessel bifurcation, in this work,
the problem is simplified by closing the side-branches and bi-
furcations both in the in-silico and in the in-vitro experiments,
by means of the employed image segmentation method.

IV. ONLINE LOCAL VESSEL ESTIMATION

In order to estimate the state of the proposed cylinder model,
a specific implementation of recursive Bayesian filtering is
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Fig. 3. Example of IVUS measurements ambiguity: two cylinders with
identical radius r, position ip and vessel lumen contours, but with distinct
orientation id (a 180◦ rotation about the z axis of IVUS frame {i}).

investigated: the unscented Kalman filter (UKF), based on the
scaled unscented transform with additive process and measure-
ment noise. Hence, local vessel estimation occurs recursively
over time while accounting for the noise and uncertainty of the
system measurements and the system evolution, respectively.
The UKF is a known extension to the Kalman filter, with
a fast computation time and mainly designed to address
nonlinear state transition and observation functions. Yet, since
only the mean and covariance of the posterior distribution
are propagated, while presuming consistent estimates of the
state probability density function, the following are assumed
to be Gaussian: i) the posterior probability density function
p(xk|z1:k,u1:k), ii) the state transition density p(xk|xk−1),
iii) the observation likelihood p(zk|xk), iv) the process noise
probability density function p(vk), and v) the measurement
noise probability density function p(nk).

In order to estimate the vessel geometry, the state and
covariance representation must be identified first. To this
regard, it is important to recall that, as introduced in section III,
the cylinder state can be represented by the non-minimal
x(id) or the minimal x(θ,φ) representations. These present
different characteristics which are exploited in our method.
This is, while x(θ,φ) is used to represent the cylinder state
throughout the different steps of the implemented UKF, the
alternate representation x(id) is best used to formulate the
state transition function f(·) and the observation function h(·).
The latter stems from the fact that a representation free of
singularities is preferred when operating with homogeneous
transformation matrices as it is the case with f(·) and h(·).
Therefore, conversion between the two representations is
deemed necessary before and after applying the state transition
and observation functions. The state uncertainty is represented
by a (5× 5) covariance matrix.

The recursion for vessel estimation by means of the
UKF starts from the posterior probability density function
p(xk−1|z1:k−1,u1:k−1) at time k− 1, generally described by:

p(xk−1|z1:k−1,u1:k−1) = N (xk−1; x̂k−1,Px̂k−1
) (9)

where N (xk−1; x̂k−1,Px̂k−1
) is the multivariate Gaussian

probability density function, evaluated at point xk−1 at time
k − 1, of mean x̂k−1, the estimated mean state, and corre-
sponding covariance matrix Px̂k−1

.
By employing the scaled unscented transform,

p(xk−1|z1:k−1,u1:k−1) (9) is approximated by a set of
weighted sigma points X i which are then passed through the

nonlinear state transition function f(·), resulting in a set of
transformed points, the predicted states X̃ i:

X̃ i = f(X i,uk,vk) for i = 1, . . . , NX (10)

with uk and vk being generally described as a known external
input and the process noise of the system, respectively.

In the case at hand, the EM measurements obtained from
the EM sensor form the inputs to the state transition function.
Their uncertainty is thus expressed in the process noise of
the system. The radius and pose of the cylinder model are,
over time, assumed constant relative to the world coordinate
frame {w}. This stems from the fact that the cylinder approx-
imation of the vessel is being locally estimated in the vicinity
of the catheter tip. Yet, unmodelled physiological dynamic
effects, such as the heartbeat and breathing motion, possibly
entail small variations to this assumption.

Furthermore, one must keep in mind that, considering the
cylinder state representations, the cylinder pose is expressed
in the IVUS frame {i} (see (4) and (5)). Therefore, a displace-
ment of the catheter tip will consequently affect the cylinder
state. Between time instances k − 1 and k, changes in the
cylinder state (variations in the catheter tip pose) are thus de-
termined from the EM measurements via the displacement of
the EM frame, represented by the homogeneous transformation
matrix ekT

ek−1 between the EM frame {e} at time k and the
EM frame {e} at time k − 1:

ekT
ek−1 = ekT

w
wT

ek−1 (11)

Accordingly, the displacement of the IVUS frame {i},
attached to the IVUS probe, between the time instants k − 1
and k is described by:

ikT
ik−1=iT

e
ekT

w
wT

ek−1
eT

i=

[
ikR

ik−1
ikt

ik−1

01×3 1

]
(12)

where ikR
ik−1 and ikt

ik−1 describe, respectively, the rotation
matrix and the translation vector of the homogeneous transfor-
mation matrix ikT

ik−1 between the IVUS frame {i} at time
k and the IVUS frame {i} at time k − 1.

Considering the variation of the IVUS frame pose between
the time instances k− 1 and k, the direction and the position
of the cylinder model at time k − 1 are expressed in the new
frame {i}k by the following:

ikd = ikR
ik−1

ik−1
d (13)

ikp = fp
(
ikR

ik−1
ik−1

p + ikt
ik−1

)
(14)

with fp(·), the function projecting the cylinder position in the
xy plane of frame {i}k along the direction ikd (see Fig. 4). By
projecting it, the cylinder position will be kept in the vicinity
of the catheter tip as the cylinder model is assumed of infinite
length along its longitudinal direction.

In a nutshell, the state transition function considers ikp
(14), the angles (θk, φk) calculated from ikd (13) by means
of cylinder state representations conversion (8), and rk−1, the
cylinder radius at time k − 1:

f
(
xk−1,uk

)
=
[
ikp

T θk φk rk−1
]T

(15)
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Fig. 4. Cylinder pose evolution, between time instants k−1 and k, considering
a variable IVUS frame {i}: the cylinder radius r and its pose expressed in
the world frame {w} are assumed constant over time.

where, as abovementioned, the input uk consists of the EM
displacement ekT

ek−1 (see (11)).
Represented by a (5 × 5) diagonal covariance matrix, the

process noise is assumed to be normally distributed with zero
mean, additive and independent. Also, it is presumed constant
over time for any state variable of x(θ,φ) (5), besides the angle
φ. The related process noise of φ is conditioned to the current
estimated value of θ (since θ true value is unknown), so no
specific orientation θ or φ is preferred by the process noise:

σ2
φ =

σ2
θ

sin2 θ
(16)

with σ2
θ and σ2

φ, the variances on θ and on φ, respectively.
From (10), the mean predicted state x̃k and covariance Px̃k

for the current time k are obtained from the predicted states X̃ i

(transformed sigma points) weighted average and covariance.
The prediction of the current state xk considering the previous
state xk−1, current inputs u1:k and previous measurements
z1:k−1 is generally formulated as follows:

p(xk|z1:k−1,u1:k) = N (xk; x̃k,Px̃k) (17)

The prediction x̃k is updated with the current measurement
zk by again resorting to the scaled unscented transform,
in which a new set of sigma points X̃

∗
i approximates the

probability density function describing the prediction equa-
tion (17). The new set of transformed points, here the predicted
measurements z̃k, results from passing the new set of sigma
points X̃

∗
i through the observation function:

Z̃i = h
(
X̃
∗
i ,nk

)
for i = 1, . . . , NX (18)

with nk being the measurement noise.
This work includes solely IVUS data in the measurement

vector zk. In particular, this vector encompasses the distances
between the origin of frame {i} to each point jic. Each point
j
ic is comprised of a series of M points j

ic (j = 1, · · · ,M)
evenly spaced every 2π

M−1 radians and determined for each
IVUS image over the contour of the vessel lumen. It should
be noted that the lumen contour lies in the xy plane of
the IVUS frame {i}. Considering the abovementioned and
that || · || describes the 2-norm of the respective vectors, the
measurement vector zk is given by:

zk =
[
||1i c|| ||2i c|| · · · ||Mi c||

]T
(19)

Furthermore, each element of the measurement vector zk
has an associated measurement noise. This is represented by an
(M x M) diagonal covariance matrix. Analogous to the process
noise, this matrix is assumed to be normally distributed with
zero mean, additive, independent and constant over time.

The output vector of the observation function includes the
distances from a series of M points j

i c̃ (j = 1, · · · ,M = 4)
evenly spaced every 2π

M−1 radians, to the origin of {i}. These
points are sampled from the contour that is obtained from the
intersection of the cylinder, represented by the state vector
xk, with the xy plane of the IVUS frame {i}. By simulating
the generation process of actual IVUS measurements, the
observation function h(xk) is obtained:

h(xk) =
[
||1i c̃|| ||2i c̃|| · · · ||Mi c̃||

]T
(20)

Besides, given that the state vector xk of the cylinder model
intersects the xy plane of the IVUS frame {i} to compose the
observation function, the origin of frame {i} must be bounded
to stay within the cylinder as the catheter is expected to stay
inside the vessel (see Fig. 5):∣∣∣∣

cylt
ik
∣∣∣∣ = ∣∣∣∣∣∣− (ikRcyl

)T
ikt

cyl
∣∣∣∣∣∣ ≤ rk (21)

where ikR
cyl and ikt

cyl compose the pose ikT
cyl of the

frame {cyl}, attached to the cylinder model, expressed in
the frame {i}. This relation is better described in section III
(see (6) and Fig. 2). Note that when the sigma points do
not satisfy (21) (the constraint), the output of the observation
function is adapted as illustrated in Fig. 5, since the origin of
frame {i} falls outside the predicted cylinder. From this, the
estimation error of the UKF is anticipated to increase and so,
it is necessary to handle such case.

Following up from (18), the mean predicted measurement
z̃k and covariance Pz̃k are obtained from the weighted aver-
age and covariance of Z̃i. From the difference between the
predicted measurements z̃k and the actual measurements zk,
by means of the Kalman gain K = Px̃kz̃kP

−1
z̃k

, the updated
state x̂k and its corresponding covariance Px̂k are determined:

x̂k = x̃k +K
(
zk − z̃k

)
(22)

Px̂k = Px̃k −KPz̃kK
T (23)

where Px̃kz̃k is the weighted cross-covariance of x̃k and z̃k.
Finally, the prediction is updated as follows:

p(xk|z1:k,u1:k) = N (xk; x̂k,Px̂k) (24)

Note that equation (24) formulates the general equation (re-
lated to the prediction update) characteristic to the UKF.

V. EXPERIMENTAL SETUP AND VALIDATION METRICS

In this section, the experimental setups used to validate
and further demonstrate the proposed methods are described.
Validation took place in a catheter-based simulation envi-
ronment [15] (in silico experiments) using synthetic sensor
measurements, and in two simple blood vessel phantoms
(in vitro experiments), in which the robotic catheter was
steered. Fig. 1 shows both the simulation environment and
the vessel phantoms setup, also visible in Fig. 6. Altogether,
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A

 3

4

1

2

B

Fig. 5. Representation of the origin of {i} A within the predicted cylinder (the sampled contour points can be directly computed at the different intersections)
and B falling outside the predicted cylinder. For the latter, a radial scanning direction ( ) defines different cases: When no intersection takes place ( 1 ,
4 ), a constant distance a is used to define the contour points. When intersections reside in the same direction ( 2 , 3 ), both intersection points are used.

20 experiments were conducted in silico and, subsequently,
one experiment per the two vessel phantoms was performed
in vitro. The estimation errors of the cylinder position, radius
and orientation with respect to the ground-truth geometric data
were used for assessing the estimation method. The ground-
truth data was obtained by fitting 10 mm long cylinders along
the vessel geometry surrounding the catheter tip. From this,
the error between the estimated cylinder models state and
the respective vessel section ground-truth cylinders state was
directly calculated at each simulation or time step. Moreover,
the validity of the proposed local cylinder model, used as the
ground-truth cylinders, was evaluated across the entire length
of a modified/closed patient-specific aortic model (see Fig. 1).
The UKF was implemented in Python and all the experiments
ran on an Intel Core i7-8850H (2.60 GHz).

A. In silico experimental setup

The main components of the simulation environment were
the following: (1) a patient-specific aortic model, (2) syn-
thetically generated EM and IVUS data, and (3) a simulated
virtual catheter. The patient-specific aortic model, provided
by UZ Leuven, was derived from segmented CT scans of a
patient’s aorta: in the context of this work, all side-branches
in the model were artificially closed. For realistic synthetic
data, EM noise was added and modelled by Gaussian noise
with a zero mean and a standard deviation of 0.3 mm and
0.5◦ for the translational and rotational parts of the twist,
respectively. Similarly, Gaussian noise with a zero mean and a
standard deviation of 1 mm was added to the coordinates of the
synthetic IVUS data. This data is given in the form of IVUS
contour points j

ic (j = 1, · · · ,M), obtained by intersecting
the xy-plane of the IVUS frame {i} with the aortic model
mesh (see Fig. 1). It is important to note that, while the EM
system provides measurements at 40Hz, the frame grabber
used for the IVUS image acquisition works at 12 frames per
second (fps). As a result, the simulation was run at 12 fps. The
simulated virtual catheter, whose pose is computed following
an energy-minimization argumentation, is described in [15].
During the in silico experiments, the catheter was commanded
to repeatedly follow a pre-defined trajectory along the vessel
in order to better assess the UKF performance during catheter
insertion or bending. This pre-defined trajectory consisted of
a forward translation of 20 mm at 2.4 mm/s and a series of

bending commands at 4.8 ◦/s: 30◦ bending of the catheter tip
in a single bending plane (BP), 360◦ bending of the BP and
-30◦ bending of the catheter tip in the original BP.

B. In vitro experimental setup

Experiments conducted in the vessel phantoms were carried
out with the robotic catheter from section II. At each time
step, a local cylinder model was estimated. During these
experiments, catheter navigation consisted of repeating (1)
manual insertion of various length, (2) 38◦ of catheter tip bend
in a single BP, (3) 360◦ catheter tip bend of the BP, and (4)
-38◦ catheter tip bend in the first single BP. Bending occurred
at 3.6 ◦/s, whilst insertion was performed at approximately
1.5 mm/s. Ultrasound compatible Agar-Agar vessel mock-ups,
consisting of a solution of de-ionized water with 5wt% of
900 g/cm2 dry agar powder were used. The phantoms were
designed and built in-house, offering simple representations
of vessels with fixed (16 mm) and variable (from 8 to 10 mm)
inner radius. They, therefore, do not mimic a specific section of
a patient’s vasculature. The experiments were carried out in de-
ionized water, facilitating IVUS ultrasound wave propagation,
and the mock-ups were registered such that their ground-truth
for the cylinder estimation validation was available.

EM Tracking

SystemIVUS System

Variable Radius Phantom`

Experimental Setup`

Fixed Radius Phantom

Fig. 6. Depiction of the experimental setup and of the two vessel phantoms’
exterior used in the in-vitro validation.

VI. RESULTS AND DISCUSSION

The validity to capture the main features of a blood vessel
by a cylinder was determined in the simulation environment
by fitting 10 mm long cylinders to various sections of the
simulated aorta. The quality of the fit was assessed by calcu-
lating, at each simulation step, the distance between the fitted
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cylinder and the nodes of the corresponding vessel section.
Overall, for the entire vessel length, a median fitting error of
0.35 mm was found (Fig. 7 B ). Considering that the aortic
model radius is approx. 10 mm, the obtained small fitting
errors median validate the earlier assumption that 10 mm
long cylinders are enough to capture the main local geometric
characteristics of the vessel. Moreover, given that the cylinder
is continuously updated, the model was deemed sufficient for
providing meaningful navigation assistance. Such conclusion
is also supported by the consistency of the fitting errors along
the closed aortic model with an interquartile range (IQR) of
just 0.39 mm (Q1 of 0.16 mm; Q3 of 0.55 mm).

Conversely, in a supplementary analysis conducted solely
to further check the cylinder assumption, as demonstrated in
Fig. 7 A , the fitting errors distribution of an aorta with side-
branches shows larger median (0.49 mm) and IQR (0.99 mm)
values compared to a closed aorta. This increase is prompted
by the presence of side-branches, as depicted in the 3D colored
error map of Fig. 7 (left). Around these areas (at the proximal
aorta and at the aortic arch), the axisymmetric geometry of
the vessel is locally distorted and so, errors relative to the
fitted cylinders increase. Side-branches lead to not only larger
variability, but also a longer right tail, giving a Q3 of 1.20
mm and a Q1 of 0.21 mm. It should be stressed that the
results in this work do not account for the geometric distortions
occurring in the vicinity of a side-branch. That is, in this
framework, while the vessel involved in the ongoing catheter
navigation (main vessel) is modelled by the proposed cylinder,
side-branches are not. When the catheter does not need to
branch out from such main vessel, the proposed cylinder model
is thus useful.
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Fig. 7. Fitting errors (values in colorbars) representations and distributions of
10 mm long cylinders in an aorta with side-branches (left, A ) and a closed
aorta (right, B ). An example of a fitted cylinder C of the closed aorta is
shown with corresponding errors. As portrayed in the side-branch close-up
D , a cylinder model would have too large errors (4− 5 mm) to adequately

model side-branches.

For all the experiments, the initial state x0, the initial diago-
nal covariance matrix Px0

, the process noise covariance matrix
Pvk , the measurement noise (M = 10) covariance matrix
Pnk and the scaling parameters from the scaled unscented
transform κ, α and β were set as summarized in Table I.

In order to better handle the earlier mentioned ambiguous
nature of the IVUS measurements (Fig. 3), the measurement
noise was selected higher than the process noise. This relation
between measurement and process noises means an increased

TABLE I
UKF PARAMETERS USED IN BOTH THE in silico AND in vitro EXPERIMENTS

x0 [0 mm 0 mm π
2

π
2

15 mm]

Px0 diag
([

5 mm 5 mm π
12

π
12

sin θ0
5 mm

])2
Pvk diag

([
0.01 mm 0.01 mm π

3600

π
3600
sin θk

0.5 mm
])2

Pnk diag([3.5 mm . . . 3.5 mm])2

[κ α β] [0 1 2]

confidence in the state transition function and the EM input
(which are not multimodal) and a reduced confidence in the
IVUS measurements. This then conditions the UKF to more
likely infer the correct cylinder state. Note that the IVUS ambi-
guity mainly influences the orientation estimation, in particular
during catheter tip insertion with no bending, as it creates
multiple modes to which the filter is susceptible to converge.
When solely inserting the catheter, consecutive IVUS images
will show little change and, if the probe is parallel to the vessel
local centerline, the orientation uncertainty will increase. In
these cases, the filter may not converge to the correct mode.
Active catheter tip bending is thus beneficial to duly infer the
cylinder state.

The in silico validation comprised 20 simulated trials, dur-
ing which the cylinder radius and position were accurately esti-
mated. Both cylinder state parameters converged to the correct
mode after a few recursion steps of the UKF. This is visible in
Fig. 8 A , where the evolution of the estimation errors of one
trial is depicted. Over the 20 conducted trials, the radius and
position errors median and IQR were 0.14 mm and 0.17 mm
and 0.45 mm and 0.36 mm, respectively (Fig. 8 B ). Besides
an accurate estimation of the cylinder radius and position,
the small IQRs demonstrate low estimation variability. These
results suggest consistency in the estimation and the robustness
and reliability of the proposed framework. On the other hand,
the estimation of the cylinder orientation bears larger errors
overall. With a median of 2.94o and an IQR of 1.90o (Fig. 8
B ), the error is still acceptable. Furthermore, a growing value

of the orientation uncertainty can be used as a trigger to
actively bend the catheter and improve estimation accuracy.
This follows from observing Fig. 8, where the orientation
error diminishes during instants when the catheter is actively
bent, while it rises during straight insertions. Nonetheless, the
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reproducibility of these results (from the small IQR) indicates
a robust estimation of the local cylinder orientation. Also in
Fig. 8 A , note that the large errors visible at the start of the
experiment occur because the UKF firstly considers the initial
state x0 for the cylinder state estimation. Only after the initial
recursion steps, as multiple measurements of the environment
are taken into account by the filter, the algorithm correctly
converges. This translates in a decrease of the cylinder state
estimation errors. Finally, the computation time for one UKF
recursion shows a median and IQR of respectively 9.36 ms
and 0.50 ms, confirming the possibility of using the proposed
method intra-operatively.

Regarding the in vitro validation, the cylinder radius (with
median error: 0.42 mm and 0.70 mm; IQR of errors: 0.53
mm and 0.70 mm) and position (median error: 1.07 mm
and 0.96 mm; IQR of errors: 0.95 mm and 0.70 mm) were
accurately and precisely estimated, regardless of the vessel
mock-up. The orientation estimation showed larger errors and
oscillations (median errors: 4.69o and 3.03o; IQR of errors:
7.28o and 3.85o) compared to the simulated trials. Fig. 9
shows the error distribution of these results, alongside the error
progression for the two conducted experiments (color-coded
per phantom). Conversely to the in silico trials, during the in
vitro experiments’ probing phases (zones not highlighted in
Fig. 9 plots), one can observe that local errors occasionally
increase, especially the orientation error in the mock-up with
variable inner diameter. These phenomena are expected to be
caused by poor EM pose tracking, but also imperfect lumen
segmentation and/or inaccuracies during the registration to the
ground-truth cylinders. These factors together with straight
insertion phases also strongly affect the orientation error dis-
persion prompting the verified higher orientation IQR values
compared to the simulated trials. Nonetheless, the orientation
estimation uncertainty can be used in the catheter navigation
decision-making (e.g. to start bending), since this framework
provides not only a local 3D model of the vasculature but also
its current positioning relative to the catheter tip.
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Fig. 9. Estimation errors progression of the two in vitro experiments
conducted in a curved cylindrical variable radius phantom (blue) and a straight
cylindrical fixed radius phantom (yellow).

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a method to support the navigation
of robotic catheters relying only on non-ionizing sensing

modalities: EM tracking and IVUS imaging. The proposed
approach could radically reduce the dependence on X-ray
imaging, while still offering a way to steer the catheter in
a more deliberate manner through the vessel, e.g. to avoid
unintentional contact of the typically acute catheter tip with the
fragile vessel. Moreover, the proposed method approximates
the blood vessel geometry by a local cylinder model that can
be estimated intra-operatively based on the aforementioned
radiation-free sensing. This cylinder model offers an accurate
and larger planning horizon ahead of the instrument tip, thus
enhancing decision-making and forming a first step to au-
tonomous catheter navigation. Future work entails effectively
steering the robotic catheter using this information. Another
important task consists in developing an approach to model
vessel bifurcations, where the cylinder model is suboptimal.
Lastly, we plan to evaluate the proposed method in more realis-
tic clinical conditions, including physiological processes (e.g.
cardiac motion) and catheter navigation in smaller vessels.

REFERENCES

[1] World Health Organization. (2017) Cardiovascular diseases (cvds).
Accessed: 14-09-2020. [Online]. Available: https://www.who.int/
news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

[2] N. Townsend et al., “Cardiovascular disease in europe: epidemiological
update 2016,” European Heart Journal, vol. 37, no. 42, pp. 3232–3245,
2016.

[3] H. Rafii-Tari, C. Payne, and G. Yang, “Current and emerging robot-
assisted endovascular catheterization technologies: A review,” Annals of
Biomedical Engineering, vol. 42, no. 4, pp. 697–715, 2014.

[4] J. Bonatti et al., “Robotic technology in cardiovascular medicine,”
Nature Reviews Cardiology, vol. 11, no. 5, pp. 266–275, mar 2014.

[5] E. Vander Poorten et al., “Cognitive autonomous catheters operating in
dynamic environments,” Journal of Medical Robotics Research, vol. 1,
no. 03, p. 1640011, 2016.

[6] C. Shi et al., “Three-Dimensional Intravascular Reconstruction Tech-
niques Based on Intravascular Ultrasound: A Technical Review,” IEEE
Journal of Biomedical and Health Informatics, vol. 2194, pp. 1–1, 2017.

[7] C. Shi et al., “Real-time in vitro intravascular reconstruction and
navigation for endovascular aortic stent grafting,” The International
Journal of Medical Robotics and Computer Assisted Surgery, vol. 12,
no. 4, pp. 648–657, dec 2016.

[8] C. Bourantas et al., “A new methodology for accurate 3-dimensional
coronary artery reconstruction using routine intravascular ultrasound and
angiographic data: Implications for widespread assessment of endothe-
lial shear stress in humans,” EuroIntervention, vol. 9, no. 5, pp. 582–593,
2013.

[9] A. Karlas and S.-l. Lee, “Towards an IVUS-driven system for en-
dovascular navigation,” in 2015 IEEE 12th International Symposium on
Biomedical Imaging (ISBI). IEEE, apr 2015, pp. 1324–1327.

[10] C. Gruijthuijsen et al., “An automatic registration method for radiation-
free catheter navigation guidance,” Journal of Medical Robotics Re-
search, vol. 1, no. 3, pp. 1–13, 2016.

[11] C. Shi et al., “Simultaneous catheter and environment modeling for
trans-catheter aortic valve implantation,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2014, pp. 2024–2029.

[12] L. Zhao et al., “Scem+: Real-time robust simultaneous catheter and
environment modeling for endovascular navigation,” IEEE Robotics and
Automation Letters, vol. 1, no. 2, pp. 961–968, 2016.

[13] L. Zhao et al., “Registration-Free Simultaneous Catheter and Envi-
ronment Modelling,” in MICCAI 2016: 14th International Conference
(Vision, Pattern Recognition, and Graphics), 2016, pp. 525–533.

[14] A. Devreker et al., “Fluidic actuation for intra-operative in situ imaging,”
in 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2015, pp. 1415–1421.

[15] A. Devreker et al., “Intuitive Control Strategies for Teleoperation of
Active Catheters in Endovascular Surgery,” Journal of Medical Robotics
Research, vol. 01, no. 03, p. 1640012, sep 2016.

https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

	Introduction
	Robotic catheter and its IVUS and EM sensors
	EM and IVUS sensor measurements

	Cylinder modelling
	Online local vessel estimation
	Experimental setup and validation metrics
	In silico experimental setup
	In vitro experimental setup

	Results and discussion
	Conclusion and future work
	References



