
Introduction To rFSM

Gianni Borghesan
KU Leuven
October 6, 2021

Outline

1 Overview

2 the LUA rFSM library

3 Setup and utilities of rFSM

4 Orocos and ROS intregration

1 Introduction To rFSM

Coordination of subsystems

I Most of you see a single flow of computation in complex applications.
I In reality, computation and data flow are asynchronous.
I Computation needs to coordinate among themselves or being coordinated.
I Most of the sub-systems have more than one logic state;

the system must traverse a set of state.

2 Introduction To rFSM

Types of coordination

Orchestration Choreography

Images from https://stackoverflow.com/questions/4127241/orchestration-vs-choreography

3 Introduction To rFSM

https://stackoverflow.com/questions/4127241/orchestration-vs-choreography

Implementation of the coordination

I The easiest way is to use a state
automata;

I For the applications at hand we can use a
finite state automata (with some tricks)

I Other possibilities
• behaviour tree – but they target other goals.
• Petri Nets – for concurrent applications.

Image from https://docs.particle.io/

Image from https://en.wikipedia.org/

4 Introduction To rFSM

 https://docs.particle.io/
 https://en.wikipedia.org/

Orchestration or Choreography

I (Orchestration) Provide a single supervisor that coordinates all the
transitions; scale up hierarchically, much easier to understand

I (Choreography) Peer-to-Peer, more scalable, less intuitive.

Example
Four systems (Service A to D)
I with states IDLE, RUN,
I starting all in IDLE,
I with conditions that B requires A in RUN to go to RUN.

Questions:
how would look like the states and transitions of the two coordinations?

5 Introduction To rFSM

Orchestration or Choreography

Orchestration
In the supervisor:
S1 Ask A to RUN;

when acknowledged
S2 Ask B to RUN;

when acknowledged,
. . .

Choreography
In each system:

IDLE when my predecessor
acknowledge a RUN, I go in
ran, and then

RUN I acknowledge to my successor
that I am in RUN.

6 Introduction To rFSM

Orchestration or Choreography

Orchestration
There is a specific system that takes
care of to invoke the changes of state
in the coordinated systems;
all systems that are coordinated must
provide him with the state changes.

Choreography
Each system has a small supervisor,
or the state automata is embedded
inside the component. Small
coordination efforts.

In my opinion ...
Orchestration – a single supervisor (or a hierarchy) – is good for most
centralised, small, applications.

7 Introduction To rFSM

Finite state machine implementations

I rFSM: lua-based module, used with Orocoos.
https://github.com/kmarkus/rFSM

I Smach: python-based module, used with ROS.
http://wiki.ros.org/smach

8 Introduction To rFSM

https://github.com/kmarkus/rFSM
http://wiki.ros.org/smach

Which feature I use?
I Mainly using Moore Machines - the ”output” depends only by the current

state.
I with some extensions that makes them more similar to state charts

• Hierarchical states,
• Additional states (e.g. a counter) that breaks the concept of finite states
• (rarely) parallel states - like having more state machines in a single state.

9 Introduction To rFSM

Outline

1 Overview

2 the LUA rFSM library

3 Setup and utilities of rFSM

4 Orocos and ROS intregration

10 Introduction To rFSM

rFSM

FSMs are characterised by
I states; characterised by

• entry
• doo (do not use)
• exit (use only in special cases)

I transitions
• On a given event, go from a state to another
• guards (do not use)
• effects (do not use)

I an initial transition

11 Introduction To rFSM

rFSM

1 return rfsm.state {
hello = rfsm.state { entry= function () print("hello←↩

↪→") end },
world = rfsm.state { entry= function () print("world←↩

↪→") end },

5 rfsm. transition { src='initial ', tgt='hello ' },
rfsm. transition { src='hello ', tgt='world ', events←↩

↪→={ 'e_start ' } },
rfsm. transition { src='world ', tgt='hello ', events←↩

↪→={ 'e_restart ' } },
}

12 Introduction To rFSM

Practical guidelines: in the state machine

I use non-blocking function, possibly without return,
I Use only the entry function:

• A single effect for each transition
• You can also use self transitions

I use exit function for:
• restore a state (can be done also with an additional state)
• getting out from a sub-state machine (you do not know exactly from which state

you get from)
I do not use

• doo,
• guards: this should be deligated to a monitoring mechanism
• effects: this can be used only in place of using functions in states

13 Introduction To rFSM

Practical guidelines: in the systems

I prepare operations that can query the change of state/request
functionality

I instrument your system to fire events, or
I deploy monitors that observe the environment or other systems

14 Introduction To rFSM

Hierarchical states

1 return rfsm.state {
hello = rfsm.state { entry= function () print("hello") end },
world = rfsm.state {

exit= function () print(" leaving worlds ") end ,
5 world1 = rfsm.state { ask_to_change ()},

world2 = rfsm.state { ask_to_change ()},
rfsm. transition { src='initial ', tgt='world1 ' },
rfsm. transition { src='world1 ', tgt='world2 ', events ={ 'e_change ' } ←↩

↪→},
rfsm. transition { src='world2 ', tgt='world1 ', events ={ 'e_change ' } ←↩

↪→},},
10 rfsm. transition { src='initial ', tgt='hello ' },

rfsm. transition { src='hello ', tgt='world ', events ={ 'e_start ' } },
rfsm. transition { src='world ', tgt='hello ', events ={ 'e_restart ' } }
}

15 Introduction To rFSM

Hierarchical states

What does it happen when in rFSM is in world and
receives e restart?

16 Introduction To rFSM

Infinite states

1 return rfsm.state {
idle = rfsm.state {
entry= function () idle_config () end ,
exit= function () cleanup_controller () end },

5 move_to_measure = rfsm.state {
entry= function ()

iteration =1 ; n_elements , frames = load_probe_poses ()
end ,
exit= function () cleanup_controller_emergency () end ,

10 move = rfsm.state {
entry= function () move_config (frames [iteration]) end ,
exit= function () cleanup_controller () end },

measure = rfsm.state { do_measure (iteration)},

17 Introduction To rFSM

Infinite states (Cont.)

14 check_if_done = rfsm.state {
15 entry = function (fsm) if iteration +1> n_elements

then rfsm. send_events (fsm , " e_probe_done ")
else iteration = iteration +1 end end },

rfsm. transition { src='initial ', tgt='move ' },
rfsm. transition { src='move ', tgt='measure ', events ={ '←↩

↪→move_done '}},
20 rfsm. transition { src='measure ', tgt='check_if_done ', ←↩

↪→events ={ 'measure_done ' }},
rfsm. transition { src='check_if_done ', tgt='move ' }, },

rfsm. transition { src='initial ', tgt='idle ' },
rfsm. transition { src='idle ', tgt='move_to_measure ', ←↩

↪→events ={ 'e_start ' } },
rfsm. transition { src='move_to_measure ', tgt='idle ', ←↩

↪→events ={ 'e_probe_done ' } },
25 }
18 Introduction To rFSM

Outline

1 Overview

2 the LUA rFSM library

3 Setup and utilities of rFSM

4 Orocos and ROS intregration

19 Introduction To rFSM

Setup

I Tested in Ubuntu 20.04 + Noetic + Orocos (rtt ros integration)
I I assume that you already have Orocos workspace sourced

mkdir -p ws_rfsm /src
cd ws_rfsm /src
git clone --recursive https :// github .com/ gborghesan / rtt_ros_utilities .←↩

↪→git
git clone --recursive https :// github .com/ gborghesan / oro_extra .git
cd ..
catkin_make
source devel/setup.bash

I May be that you miss a couple of library to compile everything...
I you can always use the bare bone library as described in the

documentation
https://github.com/kmarkus/rFSM20 Introduction To rFSM

https://github.com/kmarkus/rFSM

rFSM utilities – rfsm-sim

Allows to simulate the execution of the fsm from command line;

$ rosrun rfsm rfsm -sim ex1.lua
Lua 5.1.5 Copyright (C) 1994 -2012 Lua.org , PUC -Rio
rFSM simulator v0.1, type 'help ()' to list available←↩

↪→ commands
INFO: created undeclared connector root. initial
> step ()

hello
active : root.hello(done)
queue: e_done_at_root .hello

> step ()
active : root.hello(done)
queue:

> se(" e_start ")
> step ()

world
active : root.world(done)
queue: e_done_at_root .world

>

21 Introduction To rFSM

rFSM utilities – rfsm-rviz

I It makes the figure;
I uses the graphiz lua module for lua 5.1; normally you install the 5.2 from

debian. There is a binary in the oro-extra repository.

$ rosrun rfsm rfsm -viz -h
rfsm -viz <options > -f <file > generate different rFSM representations .
options :
-f <fsm -file > fsm input file
...

$ rosrun rfsm rfsm -sim ex1.lua -pdf

22 Introduction To rFSM

Outline

1 Overview

2 the LUA rFSM library

3 Setup and utilities of rFSM

4 Orocos and ROS intregration

23 Introduction To rFSM

Deployment

I there is a component written in lua alredy ready.
I it can generate a dot graph with the current state highlighted.
I as also a port to get the state

see https://github.com/gborghesan/oro extra/blob/master/lua/
rtt components/fsm component.lua

24 Introduction To rFSM

https://github.com/gborghesan/oro_extra/blob/master/lua/rtt_components/fsm_component.lua
https://github.com/gborghesan/oro_extra/blob/master/lua/rtt_components/fsm_component.lua

Deployment

1 fsm_comp_dir = rtt. provides ("ros"):find(" oro_extra ") .. "/lua/←↩

↪→rtt_components "
depl: loadComponent (" Supervisor ", "OCL :: LuaComponent ")
sup = depl: getPeer (" Supervisor ")
sup: exec_file (fsm_comp_dir .."/ fsm_component .lua")

5 sup: getProperty (" state_machine "):set(" fsm_definition .lua")
sup: getProperty (" additional_code "):set(" fsm_extra .lua")
sup: getProperty (" viz_on "):set(false)
sup: addPeer (depl)
sup: addPeer (controller)

10 sup: configure ()
--at this point additional properties are available
sup: getProperty (" pose_file "):set(json_file_poses)
sup:start ()
depl: connect (" controller . eventPort "," Supervisor . events ",cp)

25 Introduction To rFSM

state machine file
I Like the ones we saw before
I put as less as possible code inside (only function call defined in the next

file)

26 Introduction To rFSM

additional code file
I defines all the addittional properties/ports of the component
I define the functions called in the hooks of the state machine.

Mainly, they should be calls to operations of other components.

1 tc = rtt.getTC ()
depl = tc: getPeer (" Deployer ")
controller = depl: getPeer (" controller ")
monitor = depl: getPeer (" controller ")

5 --add to the component interface
json_pose_prop =rtt. Property (" string "," pose_file ","file with probing ←↩

↪→motion json file")
tc: addProperty (json_pose_prop)
--functions
function load_probe_poses ()

27 Introduction To rFSM

additional code file (Cont.)

10 -- load the poses from a json file to vector , returns # of poses and←↩

↪→ the vector
end

function idle_config ()
controller : readSpecification (" idle__con_config .lua")

15 monitor : readSpecification (" idle_mon_config .lua")
monitor :start ()
controller : configure ()
controller : initialize ()
controller :start ()

20 end

28 Introduction To rFSM

ROS integration

It is mainly a component and a node:
I a small component (event echo) that echo from topic to a port, to be

connected to the event port; it converts from ROS string to normal string.
I a ROS Node event sender with a minimal GUI to generate events.

https://github.com/gborghesan/python gui

29 Introduction To rFSM

https://github.com/gborghesan/python_gui

ROS integration – Event Sender

I It allows an user to generate event for e.g. start a movement sequence,
stop, change operational mode,. . . .

I It is configured with a simple xml files
I every time a button is clicked, a string is written to a topic, from which

the event echo is reading.

1 <list >
<button name='Start ' event='e_start ' tooltip ='←↩

↪→start the robot '/>
<button name='Stop ' event='e_stop '/>

</list >

30 Introduction To rFSM

	Overview
	the LUA rFSM library
	Setup and utilities of rFSM
	Orocos and ROS intregration

