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INTRODUCTION
Coronary artery disease (CAD) is one of the major cardio-

vascular diseases threatening human health worldwide and is
responsible for around 20% of deaths in the developed coun-
tries [1]. Patients suffering from CAD experience different
levels of chest pain, shortness of breath, fatigue, or irregular
heartbeat. Cardiac catheterization is widely performed to
treat CAD. In this procedure, a flexible catheter is steered
along the aorta until it reaches the left and right coronary
arteries. Next, a guidewire is employed to cannulate the
occlusion area [2].

Accurate control of flexible catheters is vital in interven-
tions. Nevertheless, precise steering is difficult in practice.
Amongst other factors, hysteresis is a major cause of impre-
cision regardless of actuation technologies. Hysteresis gen-
erates a complex non-linear multi-valued relation between
input commands and the response of the catheter distal tip.
In the past, researchers endeavored to model and compensate
for the hysteresis in catheters based on mathematical model-
ing [3], where a complex identification process is imperative.
In comparison, Neural Networks (NNs) are appealing for
their ability to accurately represent complex nonlinear behav-
ior, albeit dependent on the specific application. This makes
them feasible for modeling and compensating nonlinear
systems. In this work, the feasibility of employing a NN to
deliver precise catheter control in presence of a hysteresis-
affected actuation system is investigated.

METHODS
The output of a system suffering from hysteresis depends

on both the current and past inputs, typically described as
a time series of hysteresis loops. Long Short-Term Memory
(LSTM) proposed in [4] is an effective tool for processing
sequential information since it takes historical information
into account and utilizes this knowledge to predict the
behavior at future time steps. Therefore, LSTM is logical
to be used in this work. In the following, the LSTM was
first trained based on real hysteresis data collected from an
experimental setup and then validated on that setup as well.

Pneumatic Artificial Muscles (PAMs) show good promise
in intervention tools thanks to its advantages e.g. large
bandwidth, easy fabrication, and lightweight. Nevertheless,
hysteresis is a major challenge when using PAMs, thus
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Fig. 1. The experimental setup for hysteresis data collection and LSTM
performance validation. A close-up demonstrates the bending configuration
of the catheter when the PAM is inflated.

compensation of hysteresis originating therefrom based on
LSTM is investigated. To collect training data for the LSTM,
an experimental setup was developed (Fig. 1). The setup
contains a one-DOF Nitinol distal catheter segment with
an embedded PAM. The PAM is attached off-center to the
catheter tip. When increasing the pressure, the PAM contracts
and pulls via a steel cable on the catheter tip, causing a
bending moment. A laser sensor is used to measure the
catheter tip displacement. A proportional pressure valve is
employed to regulate the pressure applied to the PAM. The
pressure and displacement data is collected at a sampling
frequency of 250 Hz and visualized on LabVIEW R©.

To fully excite the system, pressure signals as descending
sine waves following:

p(t) = e−τt(1.5× sin(2πft− π

2
) + 1.5) [bar] (1)

were used to induce multi-loop hysteresis. The resulting
catheter tip displacement - pressure data collected therefrom
were then used to train the LSTM. In Eq. (1), the variable
τ regulated the descending speed of the sine wave and
it was set to -0.05. The variable f was the excitation
frequency in Hz and it was switched among 0.2, 0.4, 0.6,
0.8. Consequently, there are four groups of data containing
34413 data points in total for training the LSTM.

To estimate the pressure for controling flexible catheters,
the displacement data were used as input to the LSTM, while
the predicted pressures are the output. The training of the
LSTM was performed on a 4 GB NVIDIA CUDA-capable
GPU. The LSTM was trained for 50 epochs, and the training
time is around 20 to 30 minutes. For prediction, the average



Fig. 2. The validation procedure for investigating the performance of the
LSTM: 1) Creating a desired trajectory; 2) The desired trajectory is pre-
processed and fed into the LSTM; 3) The LSTM predicts the corresponding
pressures; 4) The predicted pressures are read by Labview and applied to
the catheter as feedforward control; 5) The catheter tip motion is measured
by a laser sensor; 6) Measured voltages are converted to catheter tip
displacements; 7) Both measured and desired trajectories are visualized and
compared.

inference time for a single point is 2.5 ms.
To evaluate the trained LSTM, an experimental procedure

shown in Fig. 2 was conducted and illustrated as follows: 1)
desired trajectory of the catheter tip is created by the users.
In this work, a descending sinusoid trajectory following Eq.
(2) is tested:
d(t) = e−0.05t(4.5× sin(0.2πt− π) + 4.5) [mm] (2)

2) displacement data are reshaped into a window size of
120, containing previous 120 samples d(t−119),d(t−118), ...
d(t−1) and d(t), and they are fed into the trained LSTM
to predict p(t); 3) predicted pressure is produced by LSTM
and saved into a spreadsheet; 4) Labview reads the pressures
from the spreadsheet and sends this to the PAM-driven
catheter through an analog output as a feedforward control.
The pressure control frequency is 250 Hz; 5) a laser sensor
measures the motion of the catheter tip as voltage signals;
6) the measured voltage signals are converted to catheter
tip displacements; 7) both the desired trajectory and the
measured trajectory are visualized and compared on the
same plot. Root Mean Square Error (RMSE) and Maximum
Absolute Error (MAE) are used to quantitatively evaluate the
performance of hysteresis compensation.

A controller based on a backlash model introduced in
[5] was established for comparison with the LSTM-based
controller. The backlash model is a rate-independent model
that has a non-continuous function describing the dead zone.
Measured trajectories resulting from both controllers are
visualized and compared.

RESULTS
The experiments on both the LSTM and backlash mod-

els were run ten times. One example of ten experimental
results is visualized in Fig. 3. It can be observed that the
LSTM-based controller is able to achieve effective hysteresis
compensation, and the measured trajectory can precisely
track the desired trajectory. One can see that the backlash
model-based controller tries to compensate for the hysteresis
by applying large pressure variations when approaching the
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Fig. 3. Trajectories achieved by LSTM (blue) and backlash model (orange)
compared to the desired trajectory (red).

TABLE I: MEAN AND STANDARD DEVIATION OF RMSE AND MAE
OF 10 GROUPS OF EXPERIMENTS

Models RMSE (mm) MAE (mm)
Mean STD Mean STD

LSTM 0.214 0.007 0.626 0.033
Backlash model 0.499 0.014 1.350 0.042

extrema points. However, this controller has difficulties in es-
timating the exact pressure-change that is needed, leading to
significant over/under-shoots followed by some oscillations.
The average mean and standard deviation over ten groups of
the experiments (Table I) of the LSTM are 0.214 mm and
0.626 mm, respectively, which are less than half of the error
achieved by the backlash model (RMSE = 0.499 mm and
MAE=1.350 mm).

CONCLUSION AND DISCUSSION
This study proposes to compensate for the hysteresis in a

flexible catheter using LSTM. The proposed LSTM was first
trained based on four groups of descending sine waves, then
the LSTM is utilized to predict the pressures based on a given
trajectory. The performance of the LSTM was validated on
a descending sine wave (RMSE = 0.214 mm, MAE = 0.626
mm). The results indicate that the LSTM is able to effectively
compensate hysteresis in a PAM-driven catheter. The errors
are less than half of those achieved by the backlash model.
Future work focuses on validating the generalization ability
of the LSTM on other trajectory patterns that are completely
different from the training data, e.g. ascending sine waves,
sine waves with time-varying frequency, triangle waves.
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