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INTRODUCTION

Retinal venous occlusion (RVO) is the second most
common retinal vascular disease. In total, more than 16.4
million people suffer from it worldwide [1]. RVO can lead
to severe vision-impairing damage due to neovasculari-
sation, ischemia, and edema. Currently, retinal vein can-
nulation (RVC) provides a promising solution. However,
it remains a challenging operation for surgeons. During
the procedure, a clot-dissolving drug that can cannulate
the clotted retinal vein is injected into an obstructed vein
through a micro-scale cannulation needle [2]. However,
due to the small scale of the retinal veins (30 to 400 um),
reliable manual injection is extremely challenging [3].

With advancements in robotic eye surgery [4], the feasi-
bility of robot-assisted cannulation has been demonstrated
recently [5]. However, precise control of the insertion
depth remains a challenge. Too deep insertion means that
the targeted vein could be pierced and the active agent
could be injected below the vein into a highly sensitive
region. In order to avoid this problem, this abstract in-
vestigates the use of piezoelectric actuation to produce
precise insertion. However, piezoelectric actuator exhibits
hysteresis between the applied input voltage and output
displacement. To cope with the complex non-linear rela-
tionship generated by hysteresis, mathematical modeling
approaches, such as the Rate-Dependent Prandtl-Ishlinskii
(RDPI), e.g. used in [6], were proposed. These methods
require careful identification of quite a number of param-
eters. Recently, deep learning (DL) has also shown good
potential to learn complex hysteresis behaviour [7]. This
work investigates accurate control of the micropositioning
piezoelectric actuator for RVC using such DL-method.

MATERIALS AND METHODS

Hysteresis is typically described as time series data, be-
cause it is affected by both current and previous inputs. To
cope with this type of data, a Long Short-Term Memory
(LSTM) artificial neural network, which uses historical
data as a starting point and applies this knowledge to
predict future outputs, is proposed [8].

To collect training data and evaluate the performance of
the LSTM, an experimental setup was developed (see Fig.
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Fig. 1: Experimental setup, a piezo actuator realizes 1-
dimensional motion, a laser distance sensor captures the
achieved motion for evaluation purposes.

1). A micropositioning piezoelectric actuator (APF503,
Thorlabs) is used to generate motion with amplitude
up to 390um. The piezoelectric actuator is actuated by
piezoelectric drive supplies (KPZ101, Thorlabs) up to
150V. The piezoceramic is a smart material that expands
or contracts when an electrical voltage is applied. The
expansion or contraction of the piezoceramic is amplified
into a larger linear movement through a flexure mounted
on the actuator (visible in the insert of Fig. 1). The setup
also contains a high-resolution (0.7um) laser distance
sensor (OM70-11216505, Baumer Group, Switzerland)
that captures the motion of the piezoelectric actuator.
The applied electrical voltage and resulting displacement
is collected through LabVIEW®. Electrical voltages as
descending sinusoidal waves following:

v(t):Ae*”(sin(znft—g)+1) vl ()

were used to drive the piezoelectric actuator and generate
multi-loop hysteresis training data. The resulting displace-
ment and collected electrical voltage was used as input
and label to train the LSTM, respectively. The LSTM
network contains 4 stacked layers. Each LSTM cell is
made up of 64 neurons. Because of the small scale of the
retinal veins, the amplitude A was set to 7.5V to ensure
the peak value of the resulting motion would stay below
30um. To enrich the training data, the descending constant
T was set to -0.08 and -0.12, the frequency f was set
to 0.4Hz, 0.8Hz, 1.2Hz, and 1.6Hz. As a result, eight
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Fig. 2: (a): Rate-dependant hysteresis. (b): Desired trajectory (red) and measured trajectory achieved by RDPI (orange)
and LSTM (blue). (c): Relation between desired trajectory and measured trajectory.

groups containing 19216 data points were used to train
the LSTM. Figure 2(a) shows the major hysteresis loops of
each frequency. The width of the hysteresis loops increases
as the excitation frequency increases. This behavior is
known as rate-dependent hysteresis. The whole training
process takes around 25 to 30 minutes with 200 epochs on
a 6 GB CUDA-capable GPU. To test the performance of
the trained LSTM, the desired trajectory data were used
as input, while needed control voltage was predicted as
output. The following trajectory:

[um]  (2)

was used to test the trained LSTM model. The amplitude
was set to 15um keeping the peak value of the test
trajectory below 30um. The test trajectory data were
reshaped into a window size of 50. Each group acts like
d=49) qt=) 4 and was used to predict v,
Afterwards, the reshaped trajectory data were fed into
the trained LSTM model. The average prediction time of
each Appins in LSTM is 4.5 ms. The output of the LSTM
was read as control signal and sent to the piezo drive
to generate the corresponding voltage. The measurements
from the laser distance sensor served as ground truth
to calculate the three types errors in Table 1. To assess
the quality of the LSTM-based controller, a state-of-the-
art RDPI-based controller, introduced in [6], was set up
as well. To quantitatively evaluate the performance of
both controllers, three metrics are used, namely Maximum
Absolute Error (MAE), Root Mean Square Error (RMSE),
and Normalized Root Mean Square Error (NRMSE).

d(1) = 15¢~%1 (sin(27z — g) +1)

TABLE I: Results, over 5 groups of experiments

Model RMSE (um) MAE (um) NRMSE (%)

Mean | STD | Mean | STD | Mean | STD

RDPI 1.76 0.08 3.66 0.25 6.17 0.01

LSTM 0.56 0.08 1.48 0.23 1.95 0.01
RESULTS

The experiments were repeated five times. Figure 2(b)
shows one example of the five experiments. One can ob-
serve that the LSTM-based model can accurately control
the piezoelectric actuator, allowing it to follow precisely
the desired trajectory. The three metrics and standard devi-
ation over five groups of experiments are shown in Table 1.
The average RMSE, MAE, and NRMSE of the LSTM are
respectively 0.56um, 1.48um, and 1.95%. Compared to
the RDPI model, the LSTM model improves performance
by 68%, 60%, and 69%, respectively. offering a lower

standard deviation over the three metrics, the LSTM-
based controller shows good repeatable performance. The
compensated input-output relationship is shown in the Fig.
2(c) by comparing the measured and desired trajectories.
Compared to the RDPI model, the LSTM-based controller
establishes a more linear relationship. This 1-to-1 response
shows that the hysteresis is adequately compensated by the
controller.

CONCLUSIONS AND DISCUSSION

An LSTM-based controller was introduced to precisely
control the piezoelectric actuator in this abstract. The
proposed LSTM model was first trained under eight
groups of descending sinusoidal waves. Following that, the
trained LSTM model was tested with the desired trajectory
under different frequencies f and descending constant 7.
The performance of the LSTM model was evaluated with
RMSE (0.56um), MAE (1.48um), and NRMSE (1.95%).
The errors are less than half of those achieved by the
RDPI model. The good linearity shown in Fig. 2(c)
demonstrates the feasibility of the proposed LSTM model
in compensating for hysteresis under micrometer scale
in a micropositioning piezoelectric actuator, which offers
an alternative control scheme for minimally invasive eye
surgery.

Future work will focus on investigating generalization
ability of the LSTM-based controller over different test
trajectories. We also aim to move to a realistic pre-clinical
phantom.
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