One-Shot Boundary Detection Network for Multi-Modal Side-Viewing Imaging
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INTRODUCTION

Nowadays, catheter-based imaging systems are increas-
ingly used in a variety of clinical applications in order
to obtain side-viewing luminal and transmural images.
Mainstream side-viewing catheters often use Intravascular
Ultrasound (IVUS) or Optical Coherence Tomography
(OCT) to acquire cross-sectional views of the intralumi-
nal environment. IVUS is commonly used for imaging
intravascular pathologies such as aneurysms or atheroscle-
rotic plaque [1]. Side-viewing OCT can also be used to
visualize vascular structures, as well as larger lumens, such
as the colon or the respiratory lung airways. Both imag-
ing modalities have their characteristics: IVUS can see
through blood, but experiences problems seeing through
air. OCT does not have that problem, but it relies on
injection of saline solution or contact with tissue for imag-
ing in blood. The resolution of OCT is typically higher
than of IVUS whereas IVUS has a larger image depth.
Despite their differences, in side-viewing catheters, both
methods tend to produce images with a similar appear-
ance. Automatic segmentation of both OCT and IVUS is
an appealing feature for supporting real-time diagnosis or
offline image analysis. However, the resemblance between
these two imaging modalities has not yet been exploited to
produce robust tissue segmentation algorithms. Traditional
methods for segmentation of OCT or IVUS use hand-
crafted edge detection filters, mathematical morphology,
Otsu’s automatic thresholding, intersection of radial lines
with lumen boundaries, Markov-random fields and light
back-scattering [2].

This work proposes a novel deep Convolutional Neural
Network (CNN) architecture, shown in Fig. 1, based on
explicit coordinate encoding networks designed for multi-
modal image processing. Aside from improved contour
segmentation efficiency, the proposed approach directly
provides the relative distance between tissue surface and
scanning center. The proposed architecture directly en-
codes in a coordinates vector the position of the detected
object contours in the polar domain, without pix-wise
segmentation nets [3] or additional detection networks.
Moreover, the same architecture is applied to OCT and
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Fig. 1: Proposed network architecture featuring a parallel multi-
scale encoding scheme.

IVUS images for the task of lumen segmentation and then
compared with the state-of-the-art U-net architecture [3].

MATERIALS AND METHODS

Inspired by shape encoding, the proposed network
architecture predicts the contour coordinates of surgical
objects and/or intraluminal structures. In particular, the
final boundary coordinates prediction occurs in one shot
and does not rely on detection nets or segmentation nets
as backbone. The proposed method, shown in Fig. 1,
first adapts an initial shallow Resnet block to produce
raw features with the same dimension as the 2D input
image (orange arrow in Fig. 1). Then, it follows a parallel
multi-scale encoding scheme (blue dashed box in Fig. 1).
Adaptive pooling modules, after identity Resnet blocks,
extract multi-scale hierarchical coordinates position de-
scriptors which potentially contain information for predict-
ing different scales of contour coordinates. For instance,
the first order of position descriptor f, € RWXIXnx
matches the width W of the input image I € RW*H,
f extracts features with higher spatial correspondence.
In contrast, lower scale descriptors f, and f; represent
the position information with lower scale in the horizontal
direction, but they extract more abstract features that are
less sensitive to noise. Note that Fig. 1 just illustrates the
schematic of the proposed networks. Applications can thus
have more than 3 coordinates descriptors f; (i=1,2,3...).
The higher parallelism allows for much faster inference
compared to extracting hierarchical information in a cas-
caded way, as implemented in the U-Net architecture. The
fusion encoder (gray block in Fig. 1) is deployed after the
sub-branches to re-organize the multi-scale information,
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TABLE I: Comparison with post-processed U-net on the different datasets with both region- and boundary- based metrics

Jaccard index(T)

Dice coefficient (1)

Boundary error/pixel (|)

Lumen Catheter Tissue Lumen Catheter Tissue R1 v R2 R2 v R3
Phantom IVUS UNet  0.953+0.032  0.970+0.014  0.984+0.013 0.976+0.018  0.985+0.007  0.992+0.007 2.32+0.34  3.39+2.36
Phantom IVUS Ours  0.974+0.017  0.988+0.006  0.992+0.006 0.987+0.009  0.994+0.003  0.996+0.003 0.26+0.11  1.42+1.04
Phantom OCT UNet 0.973+0.035  0.937+0.043  0.600+0.297 0.985+0.019  0.966+0.025  0.699+0.242 2.54+0.38  5.51+11.2
Phantom OCT Ours 0.988+0.013  0.984+0.011  0.851+0.105 0.993+0.007  0.991+0.005  0.915+0.065 0.73+0.40  1.87+1.59
In vivo OCT UNet 0.704+0.117  0.916+0.019  0.894+0.051 0.820+£0.092  0.956+0.010  0.943+0.029 2.06+0.47 11.8+9.84
In vivo OCT Ours 0.918+0.088  0.946+0.015  0.958+0.070 0.954+0.066  0.972+0.007  0.976+0.059 0.99+0.28  4.39+2.83
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Fig. 2: Qualitative segmentation results.
which aligns all lower scale features to the original image
scale, and produces A-line level contour coordinates as
the boundary detection result.

RESULTS

An IVUS probe embedded at the tip of a robotic
catheter with an active distal segment was steered in
a poly(vinyl alcohol) (PVA) cryogel vessel phantom to
collect the first dataset (3500 images). OCT images were
acquired by steering an OCT probe in a colon phantom
with layered tissue [4] (3000 images) as well as in an in
vivo swine colon [5] (2000 images).

Qualitative results: Fig.2 shows representative results of
the boundary detection experiments. Segmentation results
are shown both in Cartesian and Polar domain. The
detected boundaries are used to segment images. The
catheter is shown in green, the tissue area is marked red,
lumen (air or blood) is shown in blue and contact between
catheter/sheath and tissue is highlighted in purple. Finally,
A-lines without back scattering are marked yellow. The
first column of Fig. 2 shows the IVUS catheter in contact
with the tissue and close to a side branch, visible in
the image. The second column shows a case where the
catheter with IVUS is inside the phantom (small lumen)
with good lumen contrast and no contact with the tissue.
The third column is taken with OCT in a large lumen.
The catheter is pressed in a tight contact between plastic
sheath and tissue. The fourth column, in the same large
lumen, shows the tissue mostly as a flat surface with the
rest of the image showing background noise.

Validation strategies: For both IVUS and OCT, the
acquired images were split into train and test dataset
by 2:1. The region segmentation accuracy was computed
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by means of the Jaccard index and the Dice coefficient,
comparing the proposed method with a U-net trained with
GAN loss [3]. As shown in Table I, the proposed architec-
ture shows higher accuracy for all datasets. Furthermore,
the U-net does not directly output the contour position.
Through post-processing of the boundaries extracted from
the U-net, the Euclidean distance with the ground-truth
boundary was computed as an additional validation metric.
Errors for 2 boundaries between 3 regions were calculated
(regions of catheter, tissue and lumen). The last two
columns of the Table I show the pix errors of each
boundary ("R1 v R2" and "R2 v R3" denote boundaries
of catheter/lumen and lumen/tissue, respectively). The
proposed method has significantly lower errors compared
to the prediction based on U-net. Mean distance errors
are reduced from 5.4+5.5 to 1.9+1.2 for OCT images,
and from 2.9+1.8 to 0.8+0.9 for IVUS images.

CONCLUSIONS AND DISCUSSION

In this work, a novel boundary detection architecture is
proposed for polar domain processing of images acquired
from side-viewing catheters. The proposed approach is
applied to two different imaging modalities and evaluated
by both area and boundary based metrics. The results show
that, in comparison to state-of-the-art methods, higher
accuracies are obtained for both OCT and IVUS. More-
over, no post-processing is required to predict the contour
coordinates. The proposed method showed superior per-
formance with accuracy improvements by 20% for side-
viewing catheter images. Future work will investigate the
use of this architecture for other tasks requiring boundary
prediction such as e.g. for inspection of the esophagus
by a capsule catheter. Further improvements could follow
from predicting the existence probability for every object
per A-line.
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