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Contact Localization of Continuum and Flexible Robot
Using Data-driven Approach

Xuan Thao Ha, Di Wu, Chun-Feng Lai, Mouloud Ourak, Gianni Borghesan,
Arianna Menciassi and Emmanuel Vander Poorten

Abstract—Continuum robots such as robotic catheters are in-
creasingly being used in minimally invasive surgery. Compliance
contributes to enhanced safety during e.g. catheter insertion,
however, estimation of contact force and location may help
clinicians avoiding exerting excessive force. Ultimately this could
lead to faster and safer interventions. Researchers proposed force
sensors integrated in the catheter tip in the past. However, such
sensors add extra complexity to the catheter design. Also, tip
force sensors do not provide insights on forces that act along
the catheter length. This paper proposes a data-driven approach
for localizing contact forces that appear over the length of the
catheter. The proposed approach consists of a collision detection
method and a contact localization method. The framework only
requires the measurement of the catheter’s shape which can be
done by an embedded multi-core Fiber Bragg Grating fiber.
The method was validated experimentally with a 3D-printed
continuum robot with an integrated multi-core fiber. A second
contact localization method which is based on identifying the
discontinuity in the measured curvature, is also implemented and
compared with the proposed method. The static and dynamic
experiments show a mean average localization error of 2.3 mm
and 4.3 mm which correspond to respectively 3.3% and 6.1%
of a 70 mm long flexible robot. These findings demonstrate that
the proposed framework outperforms the previous methods and
yield promising results. The contact state estimation algorithm
can detect collisions in at most approximately 1.08s.

I. INTRODUCTION

In the last decade, continuum robots (CRs) have gained pop-
ularity in medical robotics thanks to their ability to reach the
operational site via torturous lumens, and inherent safety. This
is because CRs can adjust shape to adapt to the surrounding
anatomy. This feature also helps CRs reach places in the human
body that traditional rigid robots cannot access.
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Figure 1. a) Design of the CR used in this study and its actual diagram. The
top and side view of the robot are shown respectively in the top and bottom
figure; b) bench top experiment setup including: 1-mechanical clamp; 2-CR;
3-Nitinol fiber protective tube; 4-multicore FBG fiber; 5-FBG interrogator and
6-overhead camera; c) overlaid images recorded by the overhead camera.

Despite the aforementioned advantages, precise navigation
of CRs through a deformable lumen remains a challenging
task since the resulting motion is not only determined by the
control action but also by the interaction taking place between
the CR and the surrounding environment. Additionally, ex-
ertion of large forces on soft tissue may cause a variety of
complications such as perforation [1]. Researchers developed
different controllers to overcome this issue. Controllers based
on Cosserat rod modeling were introduced in [2], [3]. However,
these controllers require a means to measure the external forces
that are applied on the CR. Miniature force sensor that can be
embedded in the robot’s tip has been proposed [4]. Sterilization
and miniaturization problems unfortunately restrict their use
in the operating room. Reliable distributed force sensors still
did not appear. To avoid extra sensors, researchers proposed
estimating the tip force by using a mechanic model and
employing knowledge of the applied actuation commands [5].
However, accurate models are complex and difficult to cali-
brate, and calibration must be executed for each instrument.To
overcome this problem, Feng et al. developed a machine
learning-based method to estimate the tip contact force [6].
Other researchers made use of the shape and the curvature
of the robot to estimate forces. Several methods to estimate
the shape of the flexible instruments were summarized in [7].
The curvature can e.g. be measured by an external sensor
such as a camera [8] or by embedding Fiber Bragg Grating
(FBG) sensors. For example, Khan et al. estimate the tip
force using a strain measuring technique based on FBG [9].
FBG fibers e.g. in combination with a flexure, have been
used to produce force sensors [10], [11], [12]. Also, Noh
et al. developed a miniaturize force sensor based on fiber-
optic technology in [13]. However, these approaches do not
readily transfer to distributed sensing. They also do not allow
detection of forces that occur over the length of the robot. Bajo
and Simaan estimate the contact state and contact location
based on the static deviation of the robot’s pose from its
unconstrained kinematic model [14]. Given knowledge of the
contact positions, Aloi et al. showed how the magnitude and
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direction of the interaction forces can be estimated through
numerical finite element modeling (FEM) [15]. Heunis et al.
[16] presented a method to monitor the distributed contact
force of a catheter in real-time under assumption of known
contact location. Other researchers developed approaches that
jointly estimate the contact force and location applied along
the length of the CR. They used hereto the curvature that is
calculated from the wavelength shifts measured by a multi-
core FBGs [17], [18]. Qiao et al. demonstrated in [19] that it
is possible to estimate the contact force applied on a flexible
instrument by combining the instrument’s mechanic model,
shape measured from FBG and an Extended Kalman Filter.
These methods [17], [18], [19] were verified with a Nitinol
rod surrounding an embedded multi-core FBG fiber. However
such Nitinol rod is not the best representation of a CR as it
lacks actuation.

The accuracy of the curvature-based force estimation ap-
proaches greatly depends on the employed contact point local-
ization method. If the contact location is accurately estimated,
the magnitude and direction of interaction force can be figured
out relatively easy by Cosserat rod model inversion [9]. This
aspect forms the starting point of this paper as it concentrates
on developing an improved method to accurately localize the
contact points. This paper presents a new method to detect
collisions with the environment and derives from that a way
to localize the contact point along the length of a CR. The
proposed method makes only use of the 3D shape as it is being
measured by a multi-core FBG fiber. A specific data-driven
machine learning (ML) approach, namely an ‘AutoEncoder’, is
used to detect the contact event. This allows a drastic reduction
of needed training data and time. In contrast to the method
described by Sefati et al. in [20], thanks to the use of an
AutoEncoder, it suffices to train the model during robot free-
space movement. Unlike in [18], which locates the contact
point by searching for a discontinuity in the robot’s curvature
measured by FBGs. In this work, the contact location is
estimated by identifying the discontinuity in the tip estimation
error. The proposed approach is validated by applying a single
contact force in different conditions to a monolythic 3D printed
CR equipped with a multi-core FBG fiber inserted in the
central working channel. However, with moderate adjustments
this method could be extended to localize multiple contact
locations. The contact localization method presented in [18]
is re-implemented and serves as a baseline against which the
newly proposed approach is compared to.

The rest of this paper is organized as follows: Sec. II
details the design of the CR and the experimental setup that
has been built to evaluate the proposed method. Section III
presents the proposed collision detection and contact point
localization method. The experimental validation and results
are described in Sec. IV. Section V concludes the paper and
outlines potential future work directions.

II. DESIGN OF THE CONTINUUM ROBOT

A bidirectional steerable CR was created to mimic a typical
steerable catheter. This robot, shown in Fig. 1a, was used for
data collection and for verifying the value of the suggested
method. The robot is based on a monolythic 3D-printed

mechanism called ‘HelicoFlex’ presented by Culmone et al.
[21]. The length of its steerable segment is 70 mm. The
catheter’s outer diameter is 10 mm. There are two steering
cables that pass through the proximal rigid segment and the
bendable segment to the distal end of the continuum robot. The
driving cables are glued to the tip of the CR. When actuators
pull the cables the CR will bend sidewards. Note that in this
paper, to reduce the complexity of the work, the driving cables
are actuated manually. A center channel with an inner diameter
of 0.6 mm houses a multicore-FBG fiber. The CR was 3D
printed using Perfactory 4 Mini XL’s Digital Light Processing
technology with R5 epoxy photopolymer resin (EnvisionTec
GmbH, Gladbeck, Germany). The precision of the printing
layer is 0.03 mm.

To generate ground truth data for training the neural net-
work and validate the algorithm experimentally, a bench top
experimental setup has been built around the CR as shown
in Fig. 1b. The setup includes three main components: (i) the
CR as depicted in Fig. 1a; (ii) an interrogator (FBG-Scan 804,
FBGS, Geel, Belgium) to measure the integrated multicore
FBG fiber; (iii) an overhead monocular camera (Prosilica,
Allied Vision Technology, Germany). The robot is equipped
with a 0.25 mm four-core fiber consisting of 32 FBGs from
FBGS (Geel, Belgium). The spacing between two gratings is
1 cm as can be seen in Fig. 2b. The fiber is firstly fixed to a
protective Nitinol tube by mean of tape at the proximal and
distal end. The protective tube is then inserted into the central
working channel of the robot. At the proximal and distal end,
the protective tube is rigidly fixed to the center channel using
epoxy glue. The interrogator enables measuring the wavelength
shifts of the FBG sensors when the robot is bent. This can
be either due to actuation/pulling of the steering tendons or
by external forces applied on the robot’s outer surface. Note
that the CR is placed on top of a plexiglas box and was
constrained by a mechanical clamp at the proximal end. Also
note that while the proposed method is general and works in all
three dimensions, experiments in 2D have been conducted for
sake of readability and verification symplicity. A monocular
camera is mounted approximately 30 cm above the CR facing
downward to capture the 2D shape of the robot. By using the
camera, both the position of the obstacle and of the CR can
be identified in the image frame. This then allows calculating
accurately the ground truth, namely the actual contact point (if
present) between robot and obstacle. This knowledge is then
used to validate the method. Figure 1c shows an example of
an image recorded by the overhead camera .

During the data gathering, to train the neural network, the
wavelength shifts are measured at 200 Hz. However, due to
the limitation of the camera which can only stream images at
30 Hz, the wavelength shifts are used only at 30 Hz in the
validation experiments. All the sensory data is recorded and
synchronized using Robot Operating System (ROS) [22] and
then processed by MATLAB (The Mathworks, Massachusetts,
US) on a computer with Intel 2.1 GHz core i7 processor and
32 GB of RAM, running Ubuntu 20.04.

III. METHOD
In this paper, discrete curvatures along the length of the CR

are measured by distributed multi-core FBG sensors. A method
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Figure 2. A multi-core FBG fiber with 4 cores and 8 grating sets per core. A
cross section and side view of the multi-core fiber can be seen in a) and b),
respectively. The angle of bending plane and the angle of the 1st core with
respect to the x-axis are denoted as θb and θ1 in a), respectively.

to estimate the curvature κ and the angle of the bending plane
θb from the measured wavelength shifts of the FBG sensors
is briefly described in Sec. III-A. The set of calculated κ’s
is then used as the input of a data-driven contact detection
method (which is detailed in Sec. III-B). In case a collision
is detected, the contact point is estimated using the proposed
contact localization method. This forms the topic of Sec. III-C.
The following assumptions are made in this work:

• the instrument under investigation has a large compliance
similar to a catheter or guidewire;

• a single quasi-static external point force is applied. At
this stage distributed forces or large dynamics are not
taken into account. Nevertheless, the proposed method is
assumed to be general and could be extended to estimate
a plurality and fast-varying external forces;

• the multi-core fiber is embedded in such a way that
disturbances caused by twist are negligible. The reader
can refer to Ha et al. for a method that reduces the
influence of twist [23], after which the here presented
method could be applied;

• validation takes place on a planar case, but the method is
general in all 3 dimensions (3D).

A. 3D Shape Reconstruction Using Multi-core FBG Fiber
Figure 2 shows the construction of the employed multi-

core FBG fiber. The fiber features 4 cores with 8 gratings
distributed along each core (leading to a total of 32 gratings).
Each grating is a Bragg reflector that reflects a narrow band
of the spectrum of incoming light. The rest of the spectrum
passes to the next grating or fiber end. The gratings are made in
such a way that the spacing and resulting center wavelength
of each grating is sufficiently separated from the other. As
a result, the reflected light from one grating can be clearly
differentiated from light reflected from the other gratings. The
Bragg wavelength λB is affected by both temperature variation
∆T and mechanical strain ε applied on the optical fiber. The
central wavelength of the reflected light of each grating is
measured by an interrogator connected to the optical fiber. The
measured wavelength shift of the fiber, is then given by:

λB −λB0

λB0

=
∆λ

λB0

= Sε ε +ST ∆T, (1)

where λB0 is the grating’s Bragg wavelength in unstrained
state, Sε and ST are the strain and temperature sensitivity
coefficients, respectively. A multi-core fiber typically has a
central core that coincides with the neutral axis of the fiber.
Gratings in the central core are not sensitive to bending strain,
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Figure 3. The construction of the built AutoEncoder network that can be
used to detect the collision state. The AutoEncoder consists of the encoder,
the decoder and the bottleneck layer.

only to axial strain and temperature variations. In case the
axial loading is negligible which is often the case, wavelength
shifts caused by temperature differences can be calculated. The
bending strain on the outer cores can then be determined as:

εBendi∈{2,3,4} =
∆λi

λB0iSε

− ∆λ1

λB01Sε

. (2)

The multi-core fiber provides 4 strain measurements
εi∈{2,3,4} at each cross-section where a sensor is present. Given
the strain measurements at different locations along the fiber,
κ and θb can be calculated from:

εBendi∈{2,3,4} =−κr sin(θb −
3π

2
−θi), (3)

where r is the distance between the outer cores and the central
core; θi is the angle of the ith core and θb the angle of
the bending plane, all expressed with respect to the x-axis
(Fig. 2a). A closed-form solution for (3) can be found in [24].

From the κ and θb computed at discrete points along the
fiber length, the 3D shape of the CR can be reconstructed. The
curvature κ(s) and torsion τ(s) profiles can be used to define
a continuous space curve as function of arc length s. The rate
of change of the angle of the bending plane with respect to s is
described as torsion τ(s) = dθb

ds . Curvature and torsion profiles
define how the tangent T, normal N, and binormal B unit
vectors change along the length of the curve. The differential
Frenet-Serret formula describes this mathematically [25]. The
discontinuous curvatures and torsions are then interpolated
to enhance shape estimation and provide a quasi-continuous
distribution over the arc length of the fiber. The Cartesian
position C(s) of each point along the robot’s length can then
be calculated by integrating:

Cs(s) =Cs,0 +
∫ l

0
T(s)ds, (4)

where Cs,0 is the position of the CR’s base and l is the robot’s
length.

B. Detection of Contact State

In this paper, the problem of contact state detection is ap-
proached in first instance as a classification problem with two
classes: contact and no-contact. The inputs of this classification
problem are the discrete curvatures calculated with the method
from Sec. III-A, the output is the contact state.

1) Training Data Creation: An unsupervised ML model
is trained using only κ at discrete points at each robot
configuration while the robot is bending in free-space (no-
contact). To generate the training data, the CR is manually
actuated by pulling the two driving cables respectively. As the
robot is moving the wavelength shifts are recorded to calculate
κ at discrete points where the gratings are presented.
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2) Data-driven Contact Detection Method: Contact detec-
tion algorithms are normally developed based on physical robot
models. However, exact physical models are complex to derive.
This may lead to inaccurate contact state estimation. A data-
driven collision detection method such as presented by Sefati
et al. [20] could overcome this problem. However, that method
would require a very large data-set. Also, this method requires
the training data to be generated in both contact and no-contact
cases. In the here proposed method, the contact detection
problem is formulated as an anomaly detection problem.
Anomaly detection can be solved by using an AutoEncoder.
Figure 3 shows how an AutoEncoder network consists of an
Encoder, Decoder and a bottleneck layer. The Autoencoder can
find a reduced dimension representation of the data by focus-
ing on the important characteristics and removing noise and
redundancy. During the training phase, only no-contact data
are utilized as input to the Encoder. The decoder reconstructs
no-contact data from the output of the bottleneck layers. The
representation of the no-contact data will be learned by the
bottleneck layer since the network will attempt to reduce the
difference between the input and output of the AutoEncoder.
The contact data is normally different from the no-contact data
which makes it difficult for the AutoEncoder to reconstruct
the data. Consequently, the reconstruction error will be high.
Thanks to this property, the AutoEncoder can detect contact
data based on a specified threshold value for the Root Mean
Square (RMS) reconstruction error of curvature (Eκ ). The
advantage of using an AutoEncoder to solve the problem of
contact state detection is that only collision-free data (data
captured during free-space motion) need to be recorded for
training. This forms a significant efficiency enhancement as
models that would be trained on contact situations would need
to see every possible contact situation to be able to accurately
predict a contact. Let {κ}N

t=1 be a series of observations with
κ ∈Rm representing the observation at time t and m the number
of gratings. Given the training set {κ}N

t=1, an AutoEncoder
network can be trained to detect the contact state. To determine
whether a collision occurs, an empirically-derived threshold
value can be imposed on Eκ . Figure 5a summarizes the data-
driven contact detection method.

C. Contact Location Estimation

Upon detection of contact, the next step is to find the contact
location. First, an earlier method [17], [18], that searches a dis-
continuity in the curvature (DiC), is explained (SubSec.III-C1).
Then, SubSec.III-C2 presents a new method that analyses the
discontinuity in the tip estimation error (DiTE).

1) discontinuity in curvature (DiC): Let us consider the
situation in which only point forces are applied to the robot.
In such case, according to the Cosserat rod’s constitutive
equations [26], the internal moment m of each point along
the robot can be calculated from the angular strain vector u
and the bending stiffness matrix Ku. The vector u can then be
obtained from the calculated curvature κ and θb as:

u =

κ cosθb
κ sinθb

0

 . (5)
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Figure 4. a) The 3D shape of the robot was reconstructed and transformed
to the image plane (pre-registration step is explained in section IV-B). The
contact point estimated by finding the discontinuity in measured curvature is
marked in red. b) The measured curvature was normalized and a piece-wise
linear approximation method was used to identify the discontinuity point.

It is assumed in this work that the CR is solely subjected to
a distributed moment generated by pulling the driven cables
and the compression stiffness is infinite. Thus, the internal
moment m should vary continuously. However, when external
point forces are exerted, the internal moment will be disrupted.
Based on this observation, the contact locations can be found at
the points where κ undergoes a discontinuity. Figure 4 shows
this principle. This approach has been described and verified
in [17], [18] on a rod equipped with FBG fiber in a center
channel. The contact localization method based on identifying
the discontinuity in κ has been re-implemented for comparison
on the bench top setup. It is worth mentioning that this is
the first time this DiC-based contact localization algorithm is
applied on a steerable instrument. To find the contact point,
a piece-wise linear approximation algorithm is used to find
the discontinuity (break point) in the measured curvature. The
piece-wise linear approximation algorithm starts by assuming
each point along the robot length is a break point. The set
of κ is split into two subsets at the break point. Each subset
will be fitted with a linear model using fitlm function provided
by MATLAB. The piece-wise linear fitting error will be then
calculated. The break point with the lowest fitting error will
be considered as the actual contact point. To improve the
accuracy, the set of measured curvature is normalized before
applying the piece-wise linear approximation algorithm.

The experiment results show that the contact estimation’s
accuracy of this method is not consistent. While the CR is
only bent due to external force (no actuation), the accuracy of
the estimation is equivalent to the results given in [17], [18].
However, the accuracy degrades when the CR simultaneously
experiences external forces and a distributed moment by actu-
ating via the steering cable. The experiments and the estimation
accuracy of the DiC-based contact localization approach are
detailed in Sec. IV.

2) discontinuity in tip estimation error (DiTE): To improve
the estimation accuracy in case the drive cables are actuated,
we propose a method that can identify the contact point by
finding the discontinuity in the error between the measured
robot’s tip position and the expected estimated tip position.
A free-space curvature model of the CR is first approximated
using a ML model. This free-space curvature model allows
estimating the curvature and the angle of bending plane at
all discrete points where gratings are present while knowing
κ and θb at a random grating along the CR length. In this
work, a k-Nearest Neighbors (kNN) model is used to fit the
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free-space curvature model. kNN is one of the simplest ML
algorithms, but can be effective for classification based on
supervised learning. The main disadvantages are the limited
efficiency and reliance on the selected k-value. Since this paper
is used to demonstrate the proof of concept of the proposed
method, kNN is deemed sufficient. More advanced data-driven
free-space curvature models can be implemented in the future
to improve accuracy and processing time.

The data collected during training of the AutoEncoder is
conveniently re-used to train a kNN model. The model takes
3 inputs: κ , θb and i where κ and θb are curvature and angle
of bending plane calculated at ith grating by the measured
wavelength shift (i = 1 . . .m), respectively. The output of the
kNN model are the estimated curvatures κ̃ and bending plane
angles θ̃b of all locations where FBGs are located. We define
the estimated curvature and bending plane angle of the jth

grating ( j = 1 . . .m) by using information from the ith grating
as κ̃i, j and θ̃bi, j , respectively. The general idea is that for motion
in free space our robot has excellent repeatability which means
that for a given tension to each cable the robot will always take
on a very similar shape in space. This shape will correspond
to a given κ and θb at a certain grating i and also given κ and
θb at the other gratings. Since the network is trained using
data generated in free-space motion, the kNN model learns
the relation between the values (including κ and θb) at grating
i and those at the other gratings, such that from a single pair of
values at i all the other can be derived (provided that the robot
is in free-space). If contact appears, there will be differences
between estimated and measured values from the first grating
to the grating where the external force is applied.

Rather than comparing the angle of the bending plane and
curvatures directly, it is found convenient to investigate the
effect on the estimated robot tip position. For using measure-
ments up to the ith grating C̃si(l) is calculated by integrating
[κ1, ...,κi, κ̃i,i+1, ..., κ̃i,m] and [θb1 , ...,θbi , θ̃bi,i+1 , ..., θ̃bi,m ] with
the method of section III-A. Similar the actual tip position
Cs(l), estimated by sensor measurements only, can be derived
by integrating κi and θbi from i = 1, ...,m.

The error in tip position estimation of ith grating ETipi
is then computed as the Euclidean distance between C̃si(l)
and Cs(l). At each time step, ETipi is calculated for each
grating. Assuming that an external point force is acting at
the qth grating, as shown in Fig. 5b one can expect to see
the error in the tip estimation of all gratings before the qth

grating (ETipi=1,...,q−1 ) to be significantly larger than 0 while
ETipi=q+1,...,m associated to the remaining gratings will be close
to 0. This is because the applied force will not affect the
curvature profile of the more distal robot segment (where the
qth to mth gratings are present). For this reason, the free-space
curvature model is still valid for these gratings, resulting in a
smaller error in tip estimation. A piece-wise linear approxima-
tion algorithm explained in SubSec.III-C1, is used to find the
break point in the error of tip estimation. The found break point
will be considered as the contact location. Since the contact
can appear at any arbitrary point along the robot length, the
errors in tip estimation summarized as ETip = [ETip1 ...ETipl ] are
interpolated to improve the resolution of the algorithm. ETip is
normalized before the piece-wise linear approximation method

is applied. The proposed framework to estimate the contact
location in case the robot is actuated is shown in Fig. 5b.

The contact detection algorithm is used to identify whether
the robot is touching an obstacle. In the event of a collision, the
contact localization method then localizes the point of contact.

IV. EXPERIMENTAL VALIDATION
A. Experiment Design

To evaluate the proposed framework, a training data set
is first recorded. The robot is actuated in free-space by
manually pulling the driven cables to cover its workspace
for approximately 2 minutes. The measured wavelength is
used to calculate the curvature and angle of bending plane of
points where gratings are etched. This training data set is used
to train the contact detection model (AutoEncoder network)
and the free-space curvature model (kNN). The AutoEncoder
hyper-parameters namely the hidden size and max epochs
are tuned by using randomized k-fold cross-validation on the
training data set. An initial k-fold (k = 4) validation took
place on hidden sizes of {20,30,40,50} and max epochs
{600,800,1200}. The performance results on the training data
set with 24490 samples with different combinations of hidden
size and max epochs is summarized in Table I.

The optimal hyper-parameters were selected to minimize
the k-fold mean RMS validation error of performance over
all combinations of training and testing sets in a k-fold split.
The three sets of hyper-parameters shown in bold in Table I
gives comparable validation RMS errors. The small difference
in validation error is negligible. The set of parameters with
smaller number of epoch and hidden size should be chosen to
reduce overfitting and computational time of the network. As
such 40 and 1200 were chosen as optimal values for max epoch
and hidden size, respectively. Figure 3 shows the construction
of the built AutoEncoder. The free-space curvature model is
fitted by a kNN model with k value and distance metric set
to 1 and Euclidean distance, respectively. Since κ and θb are
not on the same scale, these two sets are normalized before
applying the kNN method to ensure that all of the features are
treated equally when calculating the distance.

The performance of the method is then evaluated on unseen
data whereby the CR moves in free-space as well as constraint
by the environment. The test set is produced by manually
pulling the steer cables and bending the robot in different
shapes until the robot collides with obstacles that are placed at
10 different known locations on each side of the CR. Beside the
static experiment, a dynamic experiment was also conducted
by continuously bending the robot. Bending took place in
two directions and contacts where established with obstacles
at different points along the length of the robot to show the
robustness of the proposed approach (see attached video).

B. Ground Truth Generation

Color thresholding of the image of the overhead camera
is first used to segment the CR and the obstacle contour.
To reduce background noise and enable strong linked area
recognition, an erosion morphological operation is applied on
the binary images, followed by a dilation, both with small
kernel. The collision is detected when the robot’s contour and
the obstacle form a connected region.
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Figure 5. The proposed framework includes a) a method to detect collision and b) a method to localize the contact point. a) To detect collision state, the RMS
reconstructed error is first calculated. An threshold value determined experimentally is used to check whether contact appears. b) The tip estimation error of
each gratings are first calculated in contact localization method. After that, interpolation is applied on the tip estimation error to increase the resolution. The
interpolated tip estimation error is normalized before piecewise-linear approximation algorithm is applied to identify the location of the contact point. The blue
and red dashed lines in b) show the contact location estimated by DiTE-based and DiC-based method, respectively.

Table I
HYPERPARAMETERS FOR THE AUTOENCODER. THREE SETS OF PARAMETERS IN BOLD GIVE COMPARABLE VALIDATION RMS ERRORS. THE OPTIMAL

HYPER-PARAMETERS OF 40 AND 1200 FOR MAX EPOCH AND HIDDEN SIZE WERE CHOSEN, RESPECTIVELY.

Max Epoch 800 1200 1400
Hidden Size 20 30 40 50 20 30 40 50 20 30 40 50

Mean RMS Validation Error 0.63 0.56 0.59 0.60 0.54 0.50 0.44 0.46 0.62 0.50 0.43 0.42
Training Time (s) 23.71 31.22 31.22 38.00 39.00 36.51 57.83 70.71 74.31 91.29 101.91 111.45

Input image
Color

Segmenta�on

3D shape projected
in the image framea)

Input image
Color

Segmenta�on

3D shape projected
in the image frameb)

Figure 6. An example of ground truth generation process in the case where
the catheter is moving in free-space (a) and in the case of a collision upon
bending to the right (b). The estimated contact points respectively by DiC and
DiTE are marked by an orange and blue marker in (b), whereas the ground
truth contact location is shown by a red circle.

Additional steps are required to identify the ground truth
contact location. Firstly, the 3D reconstructed shape coordinate
frame (FBG coordinate frame) is registered with the image
coordinate frame. For this pre-registration step, the robot is
bent in free-space while the image from the overhead camera
and the wavelength shifts are recorded. The contour of the
robot is then segmented and a skeletonisation algorithm [27]
is applied on the segmented contour to find the robot’s center-
line in 2D. The 3D shapes of the robot were reconstructed
by using the measured wavelength shifts. The set of points
which contains all 3D shapes (reconstructed by the measured
wavelength shifts) and 2D shapes (recognized in the 2D image)
of the robot are defined as PFBG

x×3 and Pimg
w×2, respectively where

x and w are the number of points in each point cloud. Since the
robot is moving on top of a plexiglas plate that is positioned
parallel to the image plane, the 2D center-line of the robot can
be transformed to a 3D center-line by adding a fixed z-value
to Pimg

w×2 (i.e. z = 0).
Finally, the transformation matrix T FBG

img that is used to
transform the FBG coordinate frame to the image coordinate

frame is found by using an iterative closest point algorithm [28]
on the two sets of point cloud scale×PFBG

x×3 and [Pimg
w×2 0w×1]

where scale is the camera scale factor calibrated by observing
a known-size chess board. During the experiment, the 3D
reconstructed shape is transformed to the 2D image coordinate
frame at each time step by multiplying T FBG

img with scale×PFBG
x×3

followed by truncating the z-values. The closest pair of points
between the reconstructed shape in the image frame and the
obstacle contour was then found. Points that belong to both the
reconstructed shape and the pair of closest points is identified
as the contact point. Examples of the ground truth generation
process in case of no-contact and contact are shown in Fig. 6a
and Fig. 6b, respectively. The estimated contact point by the
DiC-based and DiTE-based methods and the ground truth
contact location are marked with orange, blue and red circles
in Fig. 6b, respectively.

C. Results and Discussion
Figure 7a and 7b show an example of experimental data

demonstrating the proposed collision detection and contact
localization methods, respectively. The continuous black line
(referenced to the left y-axis) in Fig. 7a corresponds to the
RMS reconstructed error Eκ . To improve the stability of
the contact detection algorithm, a moving average filter with
10 samples was applied to the calculated Eκ . The threshold
value to detect if contact exists is defined empirically and
is set at 3.7. By lowering the threshold value, the contact
can be detected more quickly. However, this also increases
the chance of false positives in contact state estimation. The
contact detection is activated only when Eκ is larger than the
predefined threshold value for a period longer than 0.3s. Also,
this threshold window time was set empirically and helped to
reduce false positive detections, hence effectively improving
the algorithm’s robustness. For these choices, Fig. 7a shows
that the collision is detected at t = 5.8s, thus approximately
1.43s after the contact was established. The contact points
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Contact loca�ons es�mated by DiC-based (orange dashed line) 
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Figure 7. Panel (a) depicts the estimated contact location by the DiC-based (red) and DiTE-based (blue) methods together with the ground truth (green) over
time. These locations are referenced to the left y-axis. Panel (b) shows the piece-wise linear approximation when the catheter is in contact. The blue vertical
dashed line shows the discontinuity in the calculated normalized ETip while the red vertical dashed line shows that of the measured normalized curvature κ .

Table II
EXPERIMENTAL RESULTS OF THE STATIC EXPERIMENT. THE CR IS BENT TO BE IN CONTACT WITH THE OBSTACLE AT DIFFERENT LOCATIONS.

Left Bending Right Bending
Ground truth location (mm) 29 35 40 47 57 28 38 48 52 59

Time to detect (s) 1.53 0.77 0.90 0.73 0.87 1.50 0.50 1.43 1.30 1.30
DiC 33 45 44 50 56 33 41 54 57 61

DiTE 28 37 39 46 52 30 38 47 48 53Estimated contact
location by Hybrid 28 37 39 46 56 30 38 47 57 61

DiC 1.04 5.71 2.20 6.19 8.27 0.99 0.51 1.62 0.89 0.64
DiTE 0.20 2.83 1.34 1.59 3.02 0.50 0.85 0.81 0.41 0.95Standard deviation

Hybrid 0.20 2.83 1.34 1.59 8.27 0.50 0.85 0.81 0.89 0.64

estimated by calculating the DiC and the DiTE are plotted in
red and blue in Fig. 7a, respectively. The ground truth contact
location is shown in red. The contact localization algorithm
only operates when a collision is detected. Figure 7b shows
the calculated normalized tip estimation error and normalized
curvature at t = 8s. The blue and red dashed line in Fig. 7b
show the output of the contact localization algorithm of the
DiC and DiTE-based methods, respectively.

Table II summarizes the experimental results for 10 static
experiments. The average collision detection time was 1.08s.
The results indicate that contacts closer to the middle of
the robot allow for faster contact detection. By lowering the
detection threshold and reducing the window time, collisions
can be detected faster. However, this will increase the chance
of false positive detections. Therefore researchers ought to
trade-off these two parameters based on their application.
It is worth noting that the clinician’s reaction time during
minimally invasive procedures is about 300-400 ms [29], [30].
Although the proposed method is a bit more than twice of this
reaction time, it must be stressed that the haptic feedback that
clinicians receive now is non-discriminative. Clinicians have
poor knowledge of where obstacles and forces are located.
Further, given the low speeds (less than 5 mm/s in general
[31], [32]) aside from a reduction of mental load, one can
also expect that tissue damage can be reduced significantly.
The performance of the DiTE-based method tends to reduce
when the contact appears at the distal end. The proposed
DiTE approach estimates the contact point by identifying the
discontinuity in the calculated ETip. However, the maximal
value of ETip that can be obtained by each point along the
length of the CR decreases from the base to the tip. This
is caused by the fact that the closer the point to the tip,
the fewer estimates of κ̃ and θ̃ are used to estimate the
tip position. Hence ETip will vary less for distal points. The
method will thus be less sensitive for those contacts. Despite

the fact that the accuracy of DiC-based algorithm increases
when external forces are closer to the tip, the DiTE-based
on average outperforms the DiC-based contact localization
method. To compare the two methods, the mean average
percentage error of each method was calculated by dividing the
mean average contact estimation error of the ten experiments
by the length of the flexible robot section. The mean average
percentage contact estimation error from DiC and DiTE-based
methods are 6.1% (4.3 mm) and 3.3% (2.3 mm) in the static
experiments, respectively. The DiTE-based method also yields
a lower mean standard deviation, 1.3 mm compared to 2.8 mm
of the DiC-based method. The contact detection processing
time is 0.01s while that of contact localization is 0.03s.
Further improvements in processing time can be achieved
by replacing the kNN-based free-space curvature model by
a neural network-based model. A hybrid approach could be
implemented to make use of the advantages of both methods
by running both estimators in parallel and switching between
the DiTE and the DiC methods in terms of the contact location.
The described hybrid method features a switching mechanism,
in which the estimated location of DiTE method is selected
when DiTE-based estimated contact location is in the proximal
part of the CR. Otherwise, the estimated contact location of
DiC-based method is used. The proximal part of the CR is
defined by a percentage value α and the length of the proximal
part is calculated as α× CR’s length. The experimental results
of the static experiment (see Table II row “hybrid”) showed that
the hybrid method was more effective than one method alone
with the mean average percentage contact estimation error of
2.2% (1.6 mm). In this static experiment, α is set at 68%.
In the dynamic experiment, the CR was brought into contact
with an obstacle at 11 different locations. The mean average
percentage contact estimation errors were found to be 5.4%
(3.8 mm) and 8.4% (5.9 mm) for DiTE and DiC-based contact
localization methods, respectively. The DiTE-based approach
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also showed a smaller standard deviation error of 2.7 mm,
whereas the DiC- based method showed a standard deviation
error of 3.7 mm. The experimental results of the dynamic
experiment can be seen in the attached video.

If multiple contacts arise, it is believed that the here pre-
sented approach could be extended as explained next. The
proposed approach is able to localize a single contact force
applied to the robot. In case of multiple forces acting at
different contact locations, the proposed approach can serve as
a starting step. Previous curvature-based force sensing methods
were only evaluated on a passive Nitinol rod with an embedded
multi-core FBG [17], [18], [19]. These approaches are not able
to account for the distributed forces generated by actuation.
The DiTE-based contact localization method is able to identify
the last contact force (the closest contact force to the tip) in
case of multiple contact forces. Then, one can understand that
the curvature of the length of the robot from the last contact
location to the tip is caused by the distributed forces induced
by the actuation. By using this curvature information, the
forces caused by the actuators could be calculated. Therefore
in principle the effect of the actuation on the CR could
be compensated for and the previous curvature-based force
sensing methods [17], [18], [19] can then be applied to derive
the other contact locations. After localizing the contact forces,
the magnitude of these forces could then be calculated by
inversion of the Cosserat rod model [9] or through FEM [15].

V. CONCLUSIONS
This paper presents a new data-driven approach that allows

estimating collision state and contact location solely relying
on information from FBG sensors. The approach has been
empirically validated with a 3D-printed cable-driven robot and
yields promising results. The approach can detect the collisions
in approximately 1.08s and can estimates contact locations
with a mean average percentage error of 3.3% in the static
experiment. The mean average percentage error of the dynamic
experiment using the proposed DiTE approach is 6.1%. In our
proposed approach, no assumption was needed regarding the
relative position of the multi-core fiber and the robot’s center-
line. As a result, it is expected that this method will work with
multi-core FBG fibers in off-center channels or multiple single-
core fibers routed at the circumference, freeing up the central
channel for more critical tasks. In the future, the proposed
method will be evaluated while the robot is operating in 3D.
In this case, multi-view 3D computer vision method can be
used to generate the ground truth.
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