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INTRODUCTION
Coronary artery disease (CAD) is one of the leading causes of death worldwide. One-third of deaths in developing and

developed countries in people over 35 years old were caused by CAD. This percentage even approached 50% in Western
countries [1]. The clinical symptoms of CAD are breathing difficulties, chest pain, heart attack and even sudden death.
Percutaneous Coronary Intervention (PCI) is a common procedure for treating CAD. In this procedure, a catheter is guided
through the aorta until reaching left and right coronary arteries. Next, a microcatheter or a guidewire is steered to recanalize
the occlusion. Due to the tortuosity of the aorta, the fragile and deformable nature of the vessels, and heartbeat, good
maneuverability and controllability of the catheters are imperative [2].

Robotic catheters can be operated based on various working principles [3]. Cable-driven technology is one of the most
popular driving principles for steerable catheters. The cables, which are routed over the entire length of the catheter, undergo
quite some friction with their guiding tubes. Consequently, reaching a large bandwidth is generally difficult. Instead of using
tendons, Pneumatic Artificial Muscle (PAM) could also be used to actuate catheters. PAMs have a few advantages e.g. large
bandwidth, easy fabrication, lightweight, and low cost [4]. Overall, they show good promise for use in catheters. Therefore,
this work investigates on the feasibility to actuate robotic catheters with embedded PAMs.

In practice, accurate control of catheters is difficult regardless of actuation technology. Amongst other factors, hysteresis is
a major cause of imprecision. Hysteresis generates a complex non-linear multi-valued relationship between input commands
and in this case, the response of the catheter distal tip. This multi-valued relation complicates navigation and results in
inaccurate manipulation and positioning of the catheter tip. Moreover, inadequate positioning of the relatively acute tip
could induce tissue damage or lead to complications. To overcome this problem, analytic models for modeling hysteresis
have been explored in the past [5]. A disadvantage of analytic models is that they require a large number of parameters
which leads to a complex identification process. Deep learning has already acquired increasing attention as it allows to avoid
such intricate identification process and replaces this by an, admittedly not always straightforward, training process of an
Artificial Neural Network (ANN). The deep learning technique applied in surgical robotics field has continuously grown,
such as those presented in [6] - [9]. The performance of deep learning depends on the presence of sufficient and proper
data [10]. So far, few works have attempted to use machine or deep learning for hysteresis modeling. Porto et al. [11] used

Fig. 1. An experimental setup for hysteresis data collection. The catheter distal segment is actuated by an embeded Pneumatic Artificial
Muscle (PAM). The PAM is attached off-center to the catheter tip and thus applies torque to the tip when increasing the pressure. The
resulting catheter tip displacement is measured by a laser sensor. A Graphical User Interface (GUI) is created based on Labview for
pressure control and data collection. A close-up left up and left down show respectively the bending and straight configuration of the
catheter segment.



machine learning to produce position control of a flexible surgical robot. Xu et al. [12] employed regression methods to
learn the inverse kinematics model of a serpentine surgical manipulator. Both of them worked on tendon-driven robots and
adopted traditional machine learning methods and not deep learning.

This study proposes to use deep learning and more specifically a Long Short-Term Memory (LSTM) network to model
the hysteresis. The proposed LSTM network was first tested on simulated data and then further validated on hysteresis data
collected from an experimental setup (see Fig. 1). The setup contains a one-DOF PAM-driven catheter segment as well as
a laser distance sensor to measure the displacement of the catheter segment.

METHODS
A system is said to exhibit hysteresis if it has a sort of memory. This means that the output at a certain moment is not only

determined by the corresponding input but also by the past inputs [13]. LSTM is an effective tool for processing sequential
information since it takes historical information into account and utilize this knowledge to predict behavior at future time
steps [14]. Therefore it is only but logical to explore the feasibility to model hysteresis with LSTM as is being proposed in
this work.

The feasibility of using LSTM for modeling hysteresis was investigated first in simulation and then experimentally. In
order to excite the system and provide the LSTM with abundant training data, descending sine waves following (1) were
used as input data. A random noise between 0 and 0.1 using the Matlab R© (The MathWorks, Inc., US) function rand was
added to the excitation signals to simulate hysteresis in real applications.

p(t) = Ae−τt(sin(2πft− π

2
) + 1) + rand(0, 0.1) (1)

In simulation, the amplitude A in (1) was set to 1. The time constant τ regulated the descending speed of the excitation
signals. The time constant was set to 0.01, 0.02, 0.05, 0.1, 0.15, 0.2. Variable f was the excitation frequency in Hz. The
frequency f was taken to be 0.2, 0.4, 0.6, 0.8. Combining various f and τ values resulted in 24 groups of data in total. In
each group, 1000 data points were evenly distributed over a time interval of 20 s. All the above sine waves were input into
a classical Prandtl-Ishlinskii (PI) model that was developed to simulate multi-loop hysteresis [15]. In the simulation, this PI
model served as the ground truth model, which the LSTM should try to ‘learn”. The basic component of the PI hysteresis
model is the backlash operator Hr(p, t).

Hr(p, t) = max {p(t)− r,min {p(t) + r,Hr(t− T )}}
Hr(p, 0) = max {p(0)− r,min {p(0) + r, 0}}

(2)

where p(t) denotes the input and, in this case, the input pressure, r is the threshold of a backlash operator. Time t is the
current time and T represents the sampling period. The PI model is formed as a weighted superposition of n backlash
operators:

d(t) = [w1, w2, ..., wn] · [Hr1(p, t), Hr2(p, t), ...,Hrn(p, t)]
T

= wT ·Hr(p, t)
(3)

with d(t) the output of the PI model and in this case, the catheter tip displacement, n denotes the number of backlash
operators, w is a vector of weights. The PI model in this work consists of 5 backlash operators. The weights w of PI model
were tuned such as to produce a behaviour comparable to the hysteresis visible in a real application. Seventy percent of
the above data was used as training subset and the remaining 30% of the data was employed as validation set. Apart from
these data, four groups of test sets were prepared to verify the generalizability of the LSTM: a) a descending sine wave;
b) a descending triangle wave; c) an ascending sine wave; d) an ascending sine wave with altering frequency. The time
series data were segmented into a window size of 50, which means the pressure p(t−49),p(t−48),...p(t) are used to predict
the simulated displacement d(t). The hyperparameters of the LSTM used in simulation was shown in Table I.

Additionally, an experimental setup (see Fig. 1) containing a single-DOF PAM-driven catheter segment was developed
to collect real hysteresis data. The same excitation signals as described above were used to genrate pressure commands
for actuating the catheter. For the experiments, A = 1.5 (bar) was used and the random noise in (1) was omitted. The
displacements of the catheter tip were measured by a laser photoelectric sensor. Another LSTM network was trained based
on real data. The hyperparameters of this LSTM remain the same as in simulation (see Table I).

The training of both LSTM was performed on a 2 GB NVIDIA CUDA-capable GPU. The training time is around 30 to
40 minutes. For prediction, the average inference time for a single point is 2.23 ms.

TABLE I: HYPERPARAMETERS FOR THE LSTM USED BOTH IN SIMULATION AND REAL DATA

Number of
hidden layers

Number of nodes (units)
per hidden layer

Activation
functions Optimizer Loss function Training-subset

/Validation ratio Batch size

LSTM 2 64, 64 Relu Adam L2 Loss 70%/30% 16



Fig. 2. The modeling performance of the LSTM on various kinds of test simulated signals: (a) a descending sine wave, whose f and τ
are different from those in the training set; (b) a descending triangle wave; (c) an ascending sine wave; (d) an ascending sine wave with
altering frequency.
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Fig. 3. The modeling performance of the LSTM on real data: (a) low frequency example with f=0.3, τ = -0.12; (b) higher frequency
example with f=0.7, τ = -0.06.



RESULTS
The root mean square error (RMSE) between predicted output value and simulated and/or measured output value is used

to quantify the modeling performance, which is visualised in Fig. 2. The RMSE of the four types of test signals are 0.023
(Fig. 2a), 0.025 (Fig. 2b), 0.022 (Fig. 2c), 0.024 (Fig. 2d), respectively. As shown in Fig. 2b, Fig. 2c, Fig. 2d, the LSTM
demonstrates a promising transfer learning ability on various signal patterns that are different from the training data.

The modeling performance on real hysteresis data is displayed in Fig. 3. The RMSE of a low frequency group (f = 0.3)
and a high frequency group (f = 0.7) are 0.095 mm and 0.074 mm, respectively. The RMSE of the real data is slightly
larger than those of the simulated data since the real data included measurement noise as well as the non-linearities that
originate elsewhere but not PAMs e.g. friction between the air and tubes. Nevertheless, the RMSE of the real data i.e. 0.095
mm and 0.074 mm correspond to 0.77% and 0.47% of the overall excitation amplitude and is deemed promising for CAD
applications where human accuracy is in order of 1 mm. The performance on both simulated data and real data reveals that
the LSTM is able to learn the temporal structure between observations and shows good performance in hysteresis modeling.

CONCLUSION AND DISCUSSION
This abstract proposes to model and characterize the hysteresis in a robotic catheter using LSTM. The proposed LSTM

was first validated on simulated data that was generated from a PI-model that consisted of five backlash operators. The
LSTM was trained based on 24 groups of descending sine waves. The results reveal that the LSTM has good generalization
ability on signals that have patterns differing from the training data. The LSTM was further investigated using real hysteresis
data collected from a PAM-drive catheter. The RMSE of the modeling performance in a low frequency data group and a
high frequency data group are 0.095 mm, 0.074 mm. Future work will focus on embedding LSTM network in controllers
that actually compensate for the hysteresis on the PAM-driven catheters [16]. Moreover, the proposed LSTM is a generic
method and its generalization ability on other systems suffering from hysteresis will also be investigated.
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