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Abstract— Flexible Endoscopes (FEs) for colonoscopy present
several limitations due to their inherent complexity, resulting
in patient discomfort and lack of intuitiveness for clinicians.
Robotic FEs with autonomous control represent a viable solu-
tion to reduce the workload of endoscopists and the training
time while improving the procedure outcome. Prior works
on autonomous endoscope FE control use heuristic policies
that limit their generalisation to the unstructured and highly
deformable colon environment and require frequent human
intervention. This work proposes an image-based FE control
using Deep Reinforcement Learning, called Deep Visuomotor
Control (DVC), to exhibit adaptive behaviour in convoluted
sections of the colon. DVC learns a mapping between the
images and the FE control signal. A first user study of 20
expert gastrointestinal endoscopists was carried out to compare
their navigation performance with DVC using a realistic virtual
simulator. The results indicate that DVC shows equivalent
performance on several assessment parameters, being more
safer. Moreover, a second user study with 20 novice users was
performed to demonstrate easier human supervision compared
to a state-of-the-art heuristic control policy. Seamless supervi-
sion of colonoscopy procedures would enable endoscopists to
focus on the medical decision rather than on the control of FE.

I. INTRODUCTION

Colonoscopy remains the gold standard for the diagnosis
and treatment of colorectal cancer (CRC), which is the third
most common malignancy worldwide [1]. During a routine
procedure, a Flexible Endoscope (FE) is firstly inserted from
the rectum to the caecum and then retracted to detect possible
early-stage CRC lesions. Early-stage detection of CRC can
improve the survival rate by 90% [1]. FE-based procedures
are complex due to non-intuitive mapping between the en-
doscope tip and the control steering knobs, which requires
a long and extensive training process [2]. Consequently,
these procedures increase the risks of tissue stretching and
perforation, which are the prime cause of patient discom-
fort, and pain [3]. Moreover, work-related musculoskeletal
injuries have been reported among endoscopists due to
awkward body posturing [2]. The shortage of adequately
trained endoscopists with respect to the increasing clinical
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Fig. 1. Deep Visuomotor Control (DVC) flow diagram. The environment
provides a state observation Si. The DVC agent uses the state input to
generate an action a that is applied to the environment. During the training,
DVC learns a policy 7y to perform autonomous navigation. In the evaluation
phase, the supervising clinicians can override DVC decisions through action
.

demand of colonoscopy procedures can lead to potential loss
of human lives.

To overcome these limitations, current research efforts
are developing navigation systems using robotised FE, such
as magnetic actuated FEs [4, 5, 3]. Robotised FE enables
the introduction of automation technologies by adding au-
tonomous navigation, which is the most time-consuming step
of colonoscopy [5]. This will allow the endoscopists to focus
on the clinical aspect of the procedure rather than the control
of FE, potentially improving the overall procedure outcome
and reducing the training time [3].

During the navigation phase, the clinician mainly uses
visual feedback from the FE camera to advance through
the lumen [6]. A common gesture observed by endoscopists
during the procedure is to centralise the direction of the endo-
scope towards the lumen centre. Prior works on endoscopic
navigation have built rule-based controllers to replicate this
gesture by reducing the distance between the image centre
and the detected lumen centre [7]. These algorithms fail in
situations when the tip of the endoscope approaches close
to the colon wall. Such situations occur due to the highly
deformable nature of the colon and the variable mobility
introduced by patient movements, peristalsis and breathing
which makes lumen detection not trivial. These situations
require human interventions to correct the motion direction,
or they can be handled by adaptive exploration methods, as
proposed in this work.

Rule-based controllers are being progressively replaced by
data-driven approaches such as Deep Reinforcement Learn-



ing (DRL), since they provide some degree of adaptability
[8, 9, 10]. However, the application of DRL in learning
surgical task has been limited to low-dimensional physical
state features such as robot kinematic data, which are widely
accepted to be sample-efficient and trivial to learn [8, 9, 10].
This paper proposes an image-based DRL approach for
FE control (Fig. 1) focussing on learning the navigation
task by devising an end-to-end policy to map the raw
endoscopic images to the control signal of the endoscope,
referred henceforth as Deep Visuomotor Control (DVC). We
primarily evaluate DVC through a user study with 20 expert
endoscopists who perform the navigation task in a realistic
virtual simulator.

The introduction of autonomous navigation can improve
clinical practice, relieving clinicians from demanding cogni-
tive and physical tasks. However, in safety-critical areas, such
as medical robotics, it is highly desirable to maintain human
supervision to address ethical and legal concerns. Hence, it is
essential to consider human-in-the-loop for DVC deployment
in realistic surgical scenarios. Therefore, we conducted a
second user study with 20 novice participants to demonstrate
that non-expert users can easily supervise autonomous nav-
igation, and DVC reduces the need for human intervention
compared to a state-of-the-art method.

This work presents an initial study towards generating
adaptive control for colonoscopy by proposing a DVC policy
for autonomous navigation and providing its performance
evaluation with expert endoscopists.

The content of this paper is organised as follows: Sec. II
describes the related works, while implemented methods
are explained in Sec. IIl. In Sec. IV, we elaborate on the
experimental evaluation. Finally, the results and conclusions
are discussed in Sec. V and Sec. VI respectively.

II. RELATED WORKS

The advantages of autonomous navigation in colonoscopy
have prompted several studies in this field. In [11], a screw-
type endoscope is developed, and motion adjustment is
demonstrated using reinforcement learning. This study uses
robot kinematics variables as state inputs; however, naviga-
tion through the straight segments was slow, and navigation
through bends proved awkward due to the robot’s size.
Several studies have focused on magnetic guided endoscopes
[4, 5, 3]. In [4], navigation based on predefined trajectories
is presented; hence extending this method to complex non-
linear trajectories is challenging. Heuristic path planning
algorithms are used in [3] to generate a feasible path in
a colon model. This approach employs force-based real-
time sensing to guide navigation. Force-based sensing is still
not widely available in existing FE devices; moreover, the
interpretation of robotic actions without scene visualisation
is challenging, hence not suitable for human supervision. In
[5], a static perception model is developed, which extracts
the centre of the lumen from raw image. The control of
endoscope position and orientation is imparted by a pro-
portional controller that aligns the endoscopic image with
the centre of the lumen. Similar rule-based controllers have

been previously developed in [7]; however, they require
significant manual tasking for non-linear components such as
analytically computing image jacobian, and interaction ma-
trix [12]. Moreover, lumen detection could be unstable and
prone to errors due to the dynamic nature of the colon and its
sharp bends. Learning end-to-end visuomotor representations
for direct control using DRL overcomes these limitations
without separately designing perception and control models
and offers the ability to improve model parameters while
training [12].

Some studies have proposed frameworks for training DRL
policies to automate surgical tasks [8, 9, 13, 14] such as
manipulation of rigid and deformable objects. These studies
use simplified environments designed explicitly for robot-
assisted surgery to learn the instrument control. Recently,
[15] proposed a DRL method for optimising the endoscopic
camera viewpoint. These studies use low-dimensional state
information for training DRL algorithms, such as kinematic
values of the robot, the position of target etc. [8, 9, 13, 15].
In a real colonoscopy scenario, it is challenging to accurately
capture the endoscope kinematics due to limits on the sensing
capabilities [3], and intra-operative guidance is solely based
on visual feedback.
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Fig. 2. Colon models used in the experimental phase. (From left to right)
ranked in increasing complexity order, Cy, C7, C2 and C3 models. The
model complexity is characterised by the centerline from rectum to caecum,
and the number of acute bending, i.e. >90 degree, which is estimated
through visual inspection.

III. METHODS

Our objective is to develop end-to-end joint training for
perception and control to learn navigation policies that map
raw endoscopic image directly to the control signals of
the robotised FE (e.g. motor torques). For simplification
purposes, we assume that the motion demanded to the robot
is carried out immediately without any latency. We develop
a realistic colonoscopy simulator with deformable tissue
dynamics, described in Sec. III-A. Further, we explain the
implementation details of DVC in Sec. III-B.

A. Simulation platform

Colon simulation - The 3D models of the bowel are
segmented in a semi-automated way using a public CT
colonography dataset [16]. The segmented models are re-
fined, and volumetrical and superficial meshes are generated.
Realistic textures are created and applied to the models using
the real endoscopy images from KVASIR dataset [16]. Then,
the obtained colon models are loaded into SOFA (Simulation



Open Framework Architecture), where a realistic mechanical
model based on real-time finite element analysis is generated,
setting the simulation parameters in order to mimic the colon
tissue behaviour [17]. Additionally, the collision detection
between the endoscope and the colon is implemented, and
physical constraints are included to realistically restrain the
colon deformations. Unity3D is adopted for creating high
quality and realistic visual rendering including additional
visual effects such as reflection on the organ surface or
vignetting the peripheral darkening of the endoscopy image
[16].
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Fig. 3. Representation of the local frame at the endoscope tip. The X-Y
plane of the camera is parallel to the image frame, while the z-axis represents
the direction of insertion. The green region represents the detected lumen
centre.

Endoscope simulation - We assume a scenario close to
a magnetically guided FE where external magnets control
the motion of the magnetic tip while the tether follows
the tip passively [4]. Hence, in this preliminary simulator
version, we neglect the effect of the endoscope tether due
to multiple collision points with the colon model that could
lead to simulation instability. The endoscope tip is modelled
as a rigid capsule with weight, length and diameter of 20g,
36mm and 14mm, respectively [18]. An angular drag of
4 rad/sec? is added to account for the frictional resistance
[18]. The endoscope tip embeds a camera and has four
degrees of freedom for the motion as shown in Fig. 3,
i.e. translation (insertion/retraction), roll, bending in two
perpendicular directions (pitch/yaw).

B. Deep Visuomotor control

DRL background - The colon navigation problem is for-
malised into a Markov Decision Process (MDP) represented
by a tuple (S, A, R,P,v,T), where S denotes the state
space, A is the action space, P is the transition probability
distribution, R is the reward space, v € [0, 1] is the discount
factor and T’ is the time horizon per episode. At each timestep
t, the environment produces a state observation s; € S. The
agent then generates an action a; € A according to a policy
a; ~ 7(s¢), and applies it to the environment to receive a
reward r, € R [19]. As a consequence, the agent transitions
to a new state s;.; sampled from the transition function
p(St41]8t,at), p € P or terminates the episode at state sy.

Learning algorithm - The agent’s goal is to learn a
stochastic behaviour policy 7 parametrised by ¢, 74 : S —

P(A) to maximise the expected future discounted reward
E[ZiT;Ol yir;]. We chose PPO [19] as a consolidated DRL
algorithm due to overall returns in terms of wall-clock train-
ing time and hyper-parameter tuning. It is out of the scope
of this work to propose a novel DRL method, while the main
goal is to perform a user study to evaluate the performance of
image-based DRL in colonoscopy navigation. In the training
session, the length of each episode is set as 10k iteration
steps, v = 0.99, and the batch size and the learning rate
hyperparameters are 64 and 3e-4, respectively. The PPO clip
ratio was 0.2 with 4 mini-batches per epoch and 4 epochs
per iteration. Each training lasted for 1.5 million iteration
steps, which was the time taken for the reward function to
converge (Fig. 5).

Action space - The preliminary manual control of the
endoscope revealed that if the endoscope is directed against
the colon wall, especially at the sharp turns, the lumen is
not visible. Hence, it is critical to avoid the translation of
the endoscope in such scenarios. Therefore, we develop an
action strategy, where a translation motion with a constant
velocity of v.,q = 10mm/sec is carried out only when the
lumen is detected. The action space consists of discrete
angular rotation values in the three degrees of freedom at
the endoscope tip, 60, = a, o € {0,—1,+1} in the j*
spatial dimension. In the tip local reference frame, j € z,y, 2
corresponds to the orientation alignment in the horizontal and
vertical directions in the image plane and the endoscope roll,
respectively (Fig. 3). In cases when the lumen is not visible,
the translation velocity of the endoscope is set to zero, and
the agent carries out orientation changes to detect the lumen.

Observation space and policy - The sensory input to
the DVC agent is composed of a downscaled endoscopic
image. The RGB images rendered by the endoscopic camera
(1024x1024 pixels) is downscaled to 128x128 pixels. The
policy 4 is represented by a CNN architecture, consisting of
two convolutional layers (Fig. 1) for encoding visual scene
representations. The network details are publicly available
on the project website '. The output of the convolutional
layers are fed into a combination of fully connected layers
and Long Short-Term Memory (LSTM) layer to represent
time-dependent behaviour, each with 128 rectified units,
followed by the linear connections to the output logits 7 for
each action a; and values estimate V;. A softmax function
transforms the logits to action probabilities. The complete
network is trained end-to-end to acquire task-specific visual
features.

Reward function - The goal of navigation is to reach
the end of the colon without any significant complications.
Visuomotor control should be able to track the colon during
the whole procedure. Successful tracking requires the lumen
centre P, to be close to the image centre P.. Hence, a dense
reward 7;(s¢, a;) is designed as follows:

_Jc = (I1PL = Pil|2/Dmas)), L=
(8¢, at) = 1

Thttps://github.com/Ameyapores/DVC



TABLE I
NAVIGATION PARAMETERS USED FOR VALIDATION WITH THEIR DESCRIPTION

Navigation

metrics Description
1 Time of insertion  TOI is measured from the time point where the initial movement of the endoscope is detected to the time point when
(TOI) the caecum is reached.
2 Colon Wall Colli- CWC refers to the scenario when the endoscope tip touches the colon wall. The average diameter of the colon models
sion (CWC) used is Scm, hence a threshold of dd = lem is decided to classify the deformation as CWC.
3 Normalised dis- Distance travelled is crucial as multiple backward motions, reversing the direction, can lead to suboptimal trajectories.
tance The distance travelled is measured using the position values of the endoscope tip. This distance is normalised by the
centerline distance of the colon model in order to compare among different colon models. Normalised distance above 1
indicates a path distance longer than the centerline path, while a normalised distance below 1 indicates a shorter path
than the centerline was followed.
4 Average Lumen Lumen centralisation is believed to create smooth insertion trajectories hence the lumen distance in the image plane is

Distance (LD) recorded at each timepoint. This distance is normalised by the size of the image to get a value in [0,1]. Lumen distance
value 0 denotes image centre (P;) coincides with the detected lumen (Pf,), and value 1 denotes that the detected lumen

is at the farthest point.
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L represents the lumen detection flag, (I denotes lumen
detected, 0 denotes no lumen detected), the hyperparameter
C is chosen as 1. Moreover, the agent is awarded a reward
of +10 if the colon end is reached and -10 if it returns to
the original starting point, to encourage the agent to move
unidirectional towards the caecum. To detect the colon lumen
in the endoscope image, we build a threshold segmentation
algorithm that runs in real-time at 30fps based on [20],
where the image is first segmented to detect the darkest
and most distinct region, with the presumption that this area
contains the distal lumen with high probability (Fig. 4). The
segmentation is performed by converting the RGB image to
greyscale and cropping a circular region centred with the
image and a diameter equal to the image width to remove
the vignette effect on the corner.

Fig. 5. Learning curve of DVC trained on varying complexity of colon,
using three colon models. Cumulative reward is normalised in the range
[=1,1]. The shaded area spans the range of values obtained when training
the agent starting from five different initialisation seeds.

Endoscopist data acquisition - A group of 20 expert
endoscopists (more than four years of experience) were asked
to make navigation attempts in the simulation scene devel-
oped in Sec. III-A. Due to the time constraints and COVID
regulations, four colon models were selected considering the
opinion of domain experts to represent progressively more
complex scenarios (Fig. 2). Each endoscopist was instructed
to navigate the colon models from the rectum to the caecum
using a PlayStation (Sony Interactive Entertainment, USA)
joystick device. The model Cj, which conforms with the
shape and size of the average human colon, was used to

IV. EXPERIMENTAL EVALUATION familiarise the endoscopists with the controls before initial-

The experimental goal is to compare the navigation perfor-
mance of the DVC agents, the baseline method of rule-based
control [5] and the endoscopists. Hence, we create a pipeline
where the position and orientation values of the endoscope,
lumen distance in the image space, colon deformations,
and camera image can be recorded within our developed
simulator.

ising the trials. The trials started with endoscopist attempts
on the C; colon, followed by randomised attempts on Co
and C3 colon. The randomness between Cy and C'3 colon
was introduced to identify performance bias based on the
colon model.

Training DVC agents - We conduct three experiments
to validate the DVC. First, our aim is to determine the
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Fig. 6. Navigation performance comparison plots between DV C¢, and endoscopists. Several parameters are plotted a) Average lumen distance, b) Colon

wall collisions, ¢) Normalised distance, d) Time of insertion.

sample efficiency of training on different levels of colon
complexity. Hence, we train DVC agents separately using the
same models employed during the endoscopist experiment.
Second, to establish a comparative analysis between the
DVC and endoscopists, a similar experimental workflow was
followed as in the endoscopist experiments, where the DVC
was only trained on Cy (DVC¢,) and tested on Cp, C
and C3 colons. Third, the DVC was trained on the Cj
model followed by training on the Cy (DV C¢,1c,) to test
if training on a complex colon after a simple one improves
performance. To keep the overall iteration steps for DVC
training at 1.5 million, the training on Cy was terminated
after 1 million iteration steps and loaded back to train on C
for 500k iteration steps (Table. II).

Supervision - 20 novice participants (no endoscopy expe-
rience) were asked to supervise the performance of the rule-
based controller agent and the DVC agent. The experimental
workflow consisted of three trials: the participants attempted
to navigate C; followed by randomised attempts on C; and
Cj5 colon model, similar to the endoscopists data acquisition.
Cp was used for initial training. Each trial was characterised
by

1) Manual control: Participants were instructed to exclu-

sively control the endoscope using a joystick during
the entire duration of the procedure.

2) Rule-based baseline [5]: A proportional controller is

generated for orientation control that aligns the image
center (P,) to the detected lumen (Pr) as follows:

PLI - PCT]

0= B |:P - Pcy (2)

We refer to the distance between P, and P, as Lumen
Distance (LD).
3) DVC: A fully trained DV C¢, was deployed.

In control strategy 2, the rule-based controller indicates the
requirement of manual supervision when the lumen centre is
not detected. In control strategy 3, the agent is given (A; =
50) iteration steps to search for lumen when the lumen is not
detected. After A, steps, the DVC notifies the requirement of

human supervision, and manual control is activated. In both
the control strategies, the user has an override option to take
control when unsafe behaviour is encountered, e.g. collision
with the colon wall or direction of motion reversed. Once
the manual control is active, the participants can navigate
the endoscope safely and give back the control to the DVC
or rule-based controller. During each attempt, the number
of interventions by the participant was recorded. A low-
resolution (128x128 pixels) image is displayed to facilitate
interpretability of machine decisions, however users have
the option to change to high resolution (1024x1024 pixel)
display. After all the trials, users were asked to complete a
NASA Task Load Index (TLX) questionnaire [21], to score
human-perceived workload.

Data Analysis - Four different parameters are used to score
the navigation performance. Time of Insertion (TOI) and
the number of Colon Wall Collisions (CWC) are qualitative
assessment measures for colonoscopy procedures [22], while
average LD and the normalised distance travelled are the two
metrics devised in this study to measure the accuracy of the
trajectories. The details of each parameter are elaborated in
Table. I. When the user or DVC reversed its direction of
motion and returned to the rectum or perforated heavily to
destabilise the colon simulation, it was considered a failed
navigation attempt.

V. RESULTS AND DISCUSSION

The learning curves when DVC is trained on different
levels of colon complexity are presented in Fig. 5. Cj
represents a simplistic model; hence, the DVC agent reaches
high reward values in relatively fewer steps than in other
colon models. A high reward indicates that the agent suc-
cessfully learns to complete the navigation task. Whereas
(5 represents high complexity, the agent requires 1.2 million
steps for high-reward convergence. The C'; training curve lies
between Cj and C. This suggests that the training time is
related to colon complexity. However, note that DV C¢, can
navigate other complex colon models, i.e. it acquires task-
specific features that can generalise to other colon models
(Table. II).



TABLE 1T
COMPARISON BETWEEN DV C¢ AND DV Ccy 4oy

DV Cg, DVCcytcy
Average Normalised Average Normalised
LD cwe Tol distance LD cwe Tol distance

Co 0.27+£0.01  0.5£0.25 1.37£0.05  0.84£0.02 0.24+0.02 1+£1 1.3240.03  0.84+0.02
Ch 0.3040.01 33+£1.5  1.74£0.04  0.88%+0.08 0.25£0.01 3.3£0.5 1.70£0.07  0.82+0.03
Co 0.36+0.03 S5+1 2.2240.2 0.97+0.03 0.28+£0.01 4.6+£0.5 1.89£0.03  0.85+0.01
C3 0.35+£0.02  4.6+£0.5 2.15+£0.23  0.92+0.08 0.29+0.03 3+1 1.7840.05  0.89+0.09
Mean 0.31+0.04  5.0£12  2.20£0.75  0.9040.04 0.23+0.04 4.3£1.2 1.96+0.59  0.86+0.04
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TABLE III
NASA TASK LOAD INDEX FOR NOVICE USERS.

Manual  Rule-based DVC
control control

Mental demand 63 33 18
Physical demand 65 38 9
Temporal demand 30 47 17
Performance 25 34 12
Effort 57 38 10
Frustration 42 41 12
Mean workload 47 38 13

Comparative analysis - The performance data of 20 endo-
scopists was acquired while 10 different DVC agents were
trained on the Cj starting with a different random seed. The
realism of the simulation was confirmed and validated by ex-
pert clinicians. Additionally, all the users positively evaluated
the joystick used to navigate the endoscope inside the colon
as intuitive, user-friendly and easy to learn. Fig. 6 shows
the comparison of the average LD, the number of CWC, the
completion time and the normalised distance travelled. There
is a significant difference in the average LD and the number
of CWC between the endoscopists and the DVC. DVC shows
precise tip centralisation and less number of CWC compared
to endoscopists. One of the reasons for this difference is
that clinicians tend to push the colon wall at acute bends of
colon junctions (see supplementary video). This is a gesture
sometimes clinicians follow due to the rigid constraints of

(b) Co

Trajectory plot of DVC, complex and smoothest endoscopist performance for a) C1y b) C2 3) C3 models respectively.

(c) C3

the clinically available FEs. Whereas DVC is trained on
reward feedback to minimise LD, it stays centralised to avoid
contact with the wall. For the normalised distance and TOI,
a substantial difference is not noted. There is more variance
observed in the performance of the endoscopists. Some
endoscopists followed a convoluted trajectory that increased
the normalised distance and time of insertion, while others
followed smoother trajectories that resulted in the lower
normalised distance and TOI. Fig. 7 shows the most complex
and smoothest trajectories demonstrated by the endoscopists
and the trajectory executed by DV C¢, for the C'y, Cy and
Cj5 colons. The smoothness of a trajectory is estimated using
a jerk index J (em/sec®) which characterises the average
rate of change of acceleration in a movement [23]. Human
operators tend to show wide variance in performing optimal
trajectories, while DVC performance stays in the average
range.

The result of splitting the training into two colon models
DV C¢,+c, and evaluating on other colon models are shown
in Table. II. There is an improvement in the lumen detection
performance for DV C¢,+c, in comparison to DV Cq,.
DV C¢, reaches high rewards at 500k iteration steps; hence
there is no additional feedback to improve the performance.
We speculate that the agent reaches suboptimal local minima,
while, when the DVC trained on Cy is loaded to train on
(1, it encounters acute bends, which offers the potential to
maximise the cumulative reward. There is no considerable
improvement on other navigation parameters, i.e. CWC, TOI



and normalised distance.

Supervision - The human interventions are divided into
two parts. First, where the user overrides the control due
to unsafe behaviour and second, where the system demands
human supervision. The average human intervention required
for rule-based baseline was 5 4+ 1.8 for human override
and 2.5 £ 1.5 when the system demanded human control,
while for DVC, the average number of human interventions
are 0.1 & 0.5 for human override and 0.05 + 0.2 when
the system demanded human control. This difference is
attributed to DVC’s adaptability to search for new insertion
directions when the lumen is not easily detected, whereas
the rule-based controller lacks this ability. The NASA-TLX
for each control strategy is shown in Table. III. Regarding
ease of use, participants found manual control and rule-based
controller more demanding in all task load categories, while
a substantial workload reduction is observed for DVC.

VI. CONCLUSIONS

Prior works on autonomous colonoscopy navigation use
heuristic control policies that fail to adapt to situations
where detecting lumen is not straightforward and requires
frequent human intervention. We propose a DVC method
that learns a mapping between the endoscopic images and
the control signal. Motion data from 20 endoscopists was
acquired and compared to DVC control. Our performance
evaluation shows an equivalent performance in terms of
the time of insertion and the distance travelled. However,
DVC reduces the number of colon wall collisions and shows
efficient lumen tracking, improving safety. Furthermore, we
conducted a second novice user study to demonstrate that
supervision of DVC control significantly reduces the user
workload with overall performance comparable to expert
endoscopists.

Our future work will demonstrate the formal validation
of the proposed virtual simulator. Moreover, the proposed
strategy will be tested on the real robotic FE system. Hence,
some simplified assumptions made in this simulation study
need to be reconsidered in the learning loop. For example,
when controlling a real robotic FE it is common that the
required movements are not as smooth as in the simulator
and they are not performed immediately due to friction and
the conformation of the colon walls.
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