W ATLAS

Introduction

Best Practices in integrating complex robotic systems

Gianni Borghesan
KU Leuven
Febraury 2019

Outline

1 Overview of the Course

2 Modelling a complex system

3 The Process of integration

1 Introduction KU LEUVEN cz’ﬂTL/qS

Practical infos

Where Preparation
KU L
| Leuven » A PC (also VM) with Ubuntu 16 +
When Ros Kinetic + Orocos
24-28 of February 2020 » Group: General concept of the system

» Individual: pitch presentation a
Who description of the module that you

o would integrate (behaviour, life-cycle,
> Gianni Borghesan (KUL) data exchanged) — after this

» Diego Dall' Alba (UNIVR) presentation.
» Albert Hernansanz (UPC)

2 Introduction KU LEUVEN C%QTL%

Schedule
Monday to Thursday

» Two morning sessions of 1.5 hours (9:30-11:00, 11:15 - 12:45)

» Afternoon: practical sessions & Integration (2PM - 5:30PM or later)
Friday

» Morning - Integration
» Afternoon - Evaluation (close around 4PM)
» Happy Hour

3 Introduction KU LEUVEN C’{)/qu_[/%

Schedule

S# Title Description Who
1 Introduction Presentation of the course, Overview of the GB, All
integration process, ESR presentations,
2 Modular integra- Modular integration, Review of modules HA

tion and group definition
A ROS +Practical ROS intro, ROS hands-on 1 DDA
3 Real Time RT systems, Scheduling, Link to Control ~ GB
4 Middleware 2 OROCOS (with ROS Integration) GB
B Practical OROCOS hands-on, Integration.
5 Best practices in Programming in Safety-Critical systems, AH
programming revisioning.

GB: Gianni Borghesan (KUL). DDA: Diego Dall’ Alba (UNIVR), AH: Albert Hernansanz (UPC)

4 Introduction KU LEUVEN C%QTL%

5

Schedule

S# Title Description Who
6 Data Visualiza- Data recording and display. DDA GB
tion

C Practical ROS hands-on 2, teleop. example, inte- AH
gration.

7 Visualization Data Visualization in medical applications, DDA
sensor registering.

8 HRI how to convey information, haptic feed- AH
back teleop, virtual and augmented reality.

D Practical Integration

E Practical Integration

F Evaluation Evaluation and Feedback

Introduction

KU LEU\-IEN Cq\) ATLAS

Goal of the week

Provide the fundamental notions of:

» How to approach integration

» Software integration of complex system, consisting of:

= Hardware interfaces,

= (RT) control,

= Data treatment (classification, reconstruction),
= Decision-making systems,

= User Interfaces.

» Tools and Libraries for robotic software development.
» Software development management.
» Real-Time and scheduling.

6

Introduction KU LEUVEN C’{’/qu_[/%

Outline

1 Overview of the Course

2 Modelling a complex system

3 The Process of integration

7 Introduction KU LEUVEN cz’ﬂTL/qS

Scenario example - the eye surgery system

Goal

Enable the cannulation of retinal veins, and inject a drug via a 30 um O.D.
needle

Issues

» Tremor of hand

» Eye ball movement due to force on sclera

» Long infusion time (5 to 30 min)

» poor depth perception with the stereo microscope
» double puncture: injection in the retina

8

Introduction KU LEUVEN cq\)/‘zlq_[/%

Eye surgery Robotic System

ase

@

9 Introduction KU LEUVEN cz’ﬂTL/qS

Scenario example - the eye surgery system

Desired features - Mechanical

» Comanipulation system

» Tremor filtering - variable damping

» (Adjustable) Remote Center of Motion
» Locking system

10 Introduction

KU LEUVEN C’{) aATLAS

Scenario example - the eye surgery system

Desired features - Augmented perception

» Distance measurement retina/needle — auditory clues
» Puncture detection — auditory clues

» Vein detection — augment image.

11 Introduction KU LEUVEN c’{’ﬂTLﬂS

Scenario example - the eye surgery system

Hardware components

v

Robot, Base for moving the RCM, Motor controllers, Pedals - on Ethercat

Cameras on microscope with USB frame-grabber

v

\{

OCT interrogator (distance meas.)

FBG interrogator (force meas.)

Needle with OCT fiber and FBG integrated
» PCs

v

v

12 Introduction KU LEUVEN C’{)/qu_[/%

Scenario example - the eye surgery system

Software components

» Cameras interface Distance estimation via OCT
» OCT interface data.
Robot and Pedals interface

v

v
v

Robot control (different control
FBG interface modes)

GUI
Auditory cues
Image processing

v

v

Puncture detection via FBG

v
v

v
v

Supervisor(s)

13 Introduction KU LEUVEN C’{)/qu_[/%

Structure of the system

Eye Surgery Robot Pedals FBG Stereo-Camera OCT
and Base Interrogator Microscope Interrogator

Interface Interface Interface Interface Interface
A
4 v 4 4 \ 4
Control Monitor PunctL_Jre Vein) Di_stan(_:e
Detection reconstruction Estimation

$

Supervisor User Interface - graphical and auditory

14 Introduction

Identify the characteristics

v

Which are the requirements of each part?

v

Which data are required/provided, and how?

v

Which are the steps to bring the system up?

v

Is there a specific schedule?

v

Is each system reliable? is it possible to measure?

15 Introduction KU LEUVEN c’{)ﬂTLﬂS

Identify the concerns

A system can be roughly divided into
5 operations, [2]
» communication,

v

computation,

v

coordination,

v

configuration, and

v

composition.

16 Introduction

Composite Functional Entity

%!
‘Composite

e

| iota

Functional Entity

‘—’% Scheduler

! J_’
| C l Scheduler_|-O
events |

from [10]

KU LEUVEN Cq\) ATLAS

Outline

1 Overview of the Course
2 Modelling a complex system

3 The Process of integration

17 Introduction KU LEUVEN cz’ﬂTL/qS

Top-Down system decomposition

The system should be decomposed
iteratively in functional units

Eye Surgery system:

» Robotic system
= robot interface

= robot control
- Locking (position) control R

- Tremor filtering (damping) control

= base control ‘ . ‘ . ‘ ‘ . ‘

18

Introduction KU LEUVEN c’{’ﬂTLﬂS

Top-Down system decomposition

Each system has one or more functionalities

Algorithms that compute:
» Kinematics
» Control actions
» Estimate of states of the environment

> ...

19 Introduction

KU LEUVEN c’{’ﬂTL A8

Top-Down system decomposition

Each system/functionality has a context that

» Define the data that are “hidden” in the component

= Configuration Parameters
= States

» Define the data that are exposed
» Define the data that are needed

20 Introduction

KU LEUVEN C’{) aATLAS

Top-Down system decomposition

Each system/functionality needs to be triggered:

» Periodically?
» When new data arrives?
» Whenever there is time?

KU LEUVEN ‘-% ATLAS

21 Introduction

Example — Dynamical System

Computation —_—
F(u,x) >
Algorithms implemented in some
language.
Each algorithm is the collection and
interconnection of general-purpose 1/z NS

functionalities/libraries.

22 Introduction KU LEUVEN C’{’/qu_[/%

Example — Dynamical System

Context

Each algorithm needs data input and
data output, plus persistent data
(states). The context defines which is
the boundary of these data.

Context enables modularity.

23 Introduction

1/z

A 4

KU LEUVEN ‘-% ATLAS

Example — Dynamical System

Activities F(ux) ' >

When these functions are called?

1/z

. _J

24 Introduction KU LEUVEN C’{’/QlTL%

Top-Down system decomposition

Each system has (common) Life Cycle

» Operations that are needed to start-up.

» Different states that system should
transition to.

» Conditions that trigger transitions.

25 Introduction KU LEUVEN C’{)/QITL%

Ve

Init

public API
user code

cleanup()
cleanupHook ()

Defauit Stopped
Sstate

stop()

stopHooki()

Q‘

TaskState

PreOperational

™ configure()

configureHook()

start()
startHook()

update()
updateHook()

~N NS

(7]

O

7]

Top-Down system decomposition

¢ § s
Power Disabled
Each system can have a specific Life il
Cycle
Example: MaxPos Maxon ethercat motor
driver:
» It has the states of each ethercat i
Power Enabled
slave. e
» It has its own states (in figure). i Fr:;m };
S ! o
Operation Enable " Quick Stop Active m—o:n.'

Figue 33 Device State Machine

KU LEUVEN C’{) ATLAS

26 Introduction

Constraints of the subsystem

Each subsystem has specific requirements

» Input of data
» Timing of inputs
» State of the other components

> coo

27 Introduction KU LEUVEN C%ZTL%

Plan the work

Provide documentation

Rule out ambiguities

[terate until consensus

28 Introduction KU LEUVEN C%ETL%

Plan the work

Provide documentation

» interfaces

» offered capabilities
» required capabilities
> (risks)

Rule out ambiguities

Iterate until consensus

28 Introduction

KU LEUVEN C’{) ATLAS

Plan the work

Provide documentation

Rule out ambiguities

> units,
» order,
» definitions,

> ...

— agree on a model.

Iterate until consensus

28 Introduction KU LEUVEN C%ZTL%

Plan the work

Provide documentation

Rule out ambiguities

[terate until consensus

Verification that all the pieces works (in line of principle)

28 Introduction KU LEUVEN c’{’ﬂTL%

Recap - system decomposition

So far:

We agreed and documented
» functional decomposition in sub-systems, recursively
» breakdown of life cycles
» breakdown of requirements and capabilities

29 Introduction

KU LEUVEN c’{)ﬂTL A8

Bottom-Up system composition

To do
for each level we: Q ’ g ’
» Implement (following the /‘ .\
specification)

= Connect 7
= Synchronise ?

» Verify (vs. specification) possibly
with unit testing

KU LEUVEN c’{’ﬂlTL A8

30 Introduction

One step back to the 5Cs (before implementation)

Communication

Coordination Configuration C _
» Frequency ? oot omputation
» Synchronize i
» Real time ? U _ > (Oilfne » Real time?
» Scheduling » Online '

» Size/Buffer ?

Composition

31 Introduction KU LEUVEN C%ZTL%

One step back to the 5Cs (before implementation)

Communication

Coordination Configuration _
Computation
» Frequency 7)
_ » Synchronize » Offline
> Real time ? : » Real time?
> SChedUllng » Online

» Size/Buffer ?
Composition

Some operations that are common to all the subsystems

Re-use of same libraries/infrastructure!

KU LEUVEN C’{) aATLAS

31 Introduction

Introspection

Introspection is the ability of a (sub-)system to make explicit its state.
» the life cycle is the first approximation
» Systems may have more complex/nested state — Explicit Modelling
» Systems should make aware other systems of their state for

= logging and
= feedback on coordination, fault recovery.

KU LEUVEN C’{) ATLAS

32 Introduction

Monitoring

Monitors can evaluate:

» The state of world - from continuous domain to symbolic information
» The state of systems

= watch-dog
= compare output with expected output

33 Introduction

KU LEUVEN C’{) ATLAS

Choice of tool(s)

Depending by the characteristics of each of the 5C, each part of the
subsystem can rely on different tools, mainly offered by:

» Language
» Library

34 Introduction KU LEUVEN C%ZTL%

Choice of tool(s)

Language

» Low-level, strongly-typed languages offers deterministic performances.

» Scripting languages are normally good for deployment (e.g. Lua) or
non-realtime tasks (e.g. Python).

» Some languages are better supported by libraries (e.g. Python) or for
specific tasks.

KU LEUVEN C’{) aATLAS

35 Introduction

Choice of tool(s)

Libraries - computation

Stand-alone libraries (that depends also by language) Some examples:

v

Kinematics: KDL, expressionGraph, ...
Math/Albegra: Eigen, LAPACK, numpy, ...
Visualization: Qt, pyside, pyqgtgraph, ...
Optmization: qpOASES, Casadi, ...

v

v

v

Important!

Choose wisely, because these are strong dependencies. . .

36 Introduction KU LEUVEN C%QTL%

Choice of tool(s)

Libraries - communication, synchronisation, configuration, deployment.

This is typically a layer offered by a middle-ware. Some examples:

» ROS, ROS 2 [9] » Yarp [3] » Taste [6, 7]

» Orocos [1] » Miro [8] » MicroBLX [4]
Inter-process communication middle-ware that can be applied to robotics:

» ZeroMQ,

» Corba

Refer to [5] for more example.

37 Introduction KU LEUVEN cq\)/‘zlq_[/%

Implementation

Algorithm

» Independent — no unnecessary Q ’ Q ’ Q ’ Q ’
dependencies with e.g. the
middle-ware /. ’\

» Isolated — It does a single thing,

limit side effects

» Testable — make unit tests, if ‘
possible.

» Documented !

KU LEUVEN C’{) aATLAS

38 Introduction

Implementation

Composition of Algorithms Q ’ Q ’ Q ’ * ’
» Does the algorithm has a life
cycle ? /‘ .\

» |s it shared with others ?
» Data flow follows a strict

causality ? ‘

» Coordination ?

Division (or not) into activities and contexts !

39 Introduction KU LEUVEN c’{’ﬂTLﬂS

Implementation

Composition of Algorithms — Example

HW interface of robot — data in

Forward kinematics

Control action in user (Cartesian) space
Inverse/Transpose Differential kinematics
Control action in joint space

Safety control

HW interface of robot — data out

~N O G B~ W N o=

40 Introduction KU LEUVEN C’{)/qu_[/%

Implementation

Composition of Algorithms — Result

From outside, is a system with

» a functionality

v

a life cycle
a data flow

v

a “behavioural” interface

v

v

a trigger

v

a configuration interface

Introduction

Composite Functional Entity

*ﬁq

Oompodhnmﬂhnd Entity

| ita

E==
events

_
N—

%

| Scheduler_|-O

from [10]

KU LEUVEN ‘-% ATLAS

Composition of systems

Systems can be deployed

» in the same process
» in the same machine (IPC will be needed)
» in different machines

Issues of composition: communication and coordination

» Data sharing mechanism: latency, bandwidth, jitter, RT
» Explicit scheduling
» Additional coordination

42 Introduction KU LEUVEN C%QTL%

Composition of systems

Composite Functional Entity

o N

From outside, is a system with c.........p....‘...._m

Implementation — Ideally

» a functionality - given by other
system

| ita

» a life cycle

» a data flow] oo 16

» a “behavioural” interface _ .
> a trigger |r l e | Scheduler_|-O

» a configuration interface from [10]

43 Introduction KU LEUVEN C%QTL%

Composition of systems

Implementation — In reality

Some aspects lack support for scaling
» behaviour are integrated
» communication is flat
» synchronization is flat

» introspection tooling is very
limited

Composite Functional Entity

o N

Oompodhnmﬂhnd Entity

| ita

E==
events

_
N—

%

| Scheduler_|-O

from [10]

KU LEUVEN ‘-% ATLAS

Introduction

Verification

After each composition

» Verify (vs. specification) possibly
with unit testing

» Document
if verification fails:
» Correct, or

» Relax specification, if possible.

KU LEUVEN C’{) ATLAS

45 Introduction

Groups

Bibliography |

[1] H. Bruyninckx. “Open robot control software: the OROCOS project”.
In: Proceedings 2001 ICRA. IEEE International Conference on Robotics
and Automation (Cat. No.01CH37164). Vol. 3. May 2001, 2523-2528
vol.3. por1: 10.1109/ROBOT.2001.933002.

[2] Herman Bruyninckx et al. “The BRICS Component Model: A
Model-Based Development Paradigm for Complex Robotics Software
Systems”. In: Mar. 2013, pp. 1758-1764. 1SBN: 9781450316569. DOTI:
10.1145/2480362.2480693.

[3] Paul Fitzpatrick et al. “A middle way for robotics middleware”. In:
Journal of Software Engineering for Robotics 5.2 (2014).

1 Introduction KU LEUVEN C%ETL%

http://dx.doi.org/10.1109/ROBOT.2001.933002
http://dx.doi.org/10.1145/2480362.2480693

Bibliography Il

[4] markus Klotzbiicher. microblx: real-time, embedded, reflective function
blocks. https://github.com/kmarkus/microblx.

[5] N. Mohamed, J. Al-Jaroodi, and |. Jawhar. “Middleware for Robotics: A
Survey”. In: 2008 IEEE Conference on Robotics, Automation and
Mechatronics. Sept. 2008, pp. 736—742. DOI:
10.1109/RAMECH.2008.4681485.

[6] M. Perrotin et al. “Taste: A real-time software engineering tool-chain
overview, status, and future”. In: SDL Forum. 2011.

[7] TASTE. http://taste.tuxfamily.org. online - visited October 2019. 2019.

[8] H. Utz et al. "Miro - middleware for mobile robot applications”. In:
IEEE Transactions on Robotics and Automation 18.4 (Aug. 2002),

2 Introduction KU LEUVEN CQETL%

https://github.com/kmarkus/microblx
http://dx.doi.org/10.1109/RAMECH.2008.4681485
http://dx.doi.org/10.1109/TRA.2002.802930

Bibliography IlI

[9] V.A. Robot Operating System (ROS): The Complete Reference (Volume
3). Ed. by Anis Koubaa. Vol. 778. Studies in Computational
Intelligence. Cham: Springer, 2018. 1SBN: 978-3-319-91589-0. DOT:
10.1007/978-3-319-91590-6.

[10] Dominick Vanthienen, Markus Klotzbiicher, and Herman Bruyninckx.
“The 5C-based architectural Composition Pattern: lessons learned from
re-developing the iTaSC framework for constraint-based robot
programming”. eng. In: JOSER: Journal of Software Engineering for
Robotics 5.1 (2014), pp. 17-35. 1SSN: 2035-3928.

3

Introduction KU LEUVEN C%ZTL%

http://dx.doi.org/10.1007/978-3-319-91590-6

	Overview of the Course
	Modelling a complex system
	The Process of integration
	Appendix

