
Best Practices in integrating complex robotic systems

Introduction

Gianni Borghesan
KU Leuven
Febraury 2019



Outline

1 Overview of the Course

2 Modelling a complex system

3 The Process of integration

1 Introduction



Practical infos

Where
KU Leuven

When
24-28 of February 2020

Who

I Gianni Borghesan (KUL)
I Diego Dall’ Alba (UNIVR)
I Albert Hernansanz (UPC)

Preparation

I A PC (also VM) with Ubuntu 16 +
Ros Kinetic + Orocos

I Group: General concept of the system
I Individual: pitch presentation a

description of the module that you
would integrate (behaviour, life-cycle,
data exchanged) – after this
presentation.

2 Introduction



Schedule

Monday to Thursday

I Two morning sessions of 1.5 hours (9:30-11:00, 11:15 - 12:45)
I Afternoon: practical sessions & Integration (2PM - 5:30PM or later)

Friday

I Morning - Integration
I Afternoon - Evaluation (close around 4PM)
I Happy Hour

3 Introduction



Schedule
S# Title Description Who
1 Introduction Presentation of the course, Overview of the

integration process, ESR presentations,
GB, All

2 Modular integra-
tion

Modular integration, Review of modules
and group definition

HA

A ROS +Practical ROS intro, ROS hands-on 1 DDA
3 Real Time RT systems, Scheduling, Link to Control GB
4 Middleware 2 OROCOS (with ROS Integration) GB
B Practical OROCOS hands-on, Integration.
5 Best practices in

programming
Programming in Safety-Critical systems,
revisioning.

AH

GB: Gianni Borghesan (KUL). DDA: Diego Dall’ Alba (UNIVR), AH: Albert Hernansanz (UPC)

4 Introduction



Schedule
S# Title Description Who
6 Data Visualiza-

tion
Data recording and display. DDA GB

C Practical ROS hands-on 2, teleop. example, inte-
gration.

AH

7 Visualization Data Visualization in medical applications,
sensor registering.

DDA

8 HRI how to convey information, haptic feed-
back teleop, virtual and augmented reality.

AH

D Practical Integration
E Practical Integration
F Evaluation Evaluation and Feedback

GB: Gianni Borghesan (KUL). DDA: Diego Dall’ Alba (UNIVR), AH: Albert Hernansanz (UPC)
5 Introduction



Goal of the week
Provide the fundamental notions of:

I How to approach integration
I Software integration of complex system, consisting of:

• Hardware interfaces,
• (RT) control,
• Data treatment (classification, reconstruction),
• Decision-making systems,
• User Interfaces.

I Tools and Libraries for robotic software development.
I Software development management.
I Real-Time and scheduling.

6 Introduction



Outline

1 Overview of the Course

2 Modelling a complex system

3 The Process of integration

7 Introduction



Scenario example - the eye surgery system

Goal
Enable the cannulation of retinal veins, and inject a drug via a 30 µm O.D.
needle

Issues

I Tremor of hand
I Eye ball movement due to force on sclera
I Long infusion time (5 to 30 min)
I poor depth perception with the stereo microscope
I double puncture: injection in the retina

8 Introduction



Eye surgery Robotic System

9 Introduction



Scenario example - the eye surgery system

Desired features - Mechanical

I Comanipulation system
I Tremor filtering - variable damping
I (Adjustable) Remote Center of Motion
I Locking system

10 Introduction



Scenario example - the eye surgery system

Desired features - Augmented perception

I Distance measurement retina/needle → auditory clues
I Puncture detection → auditory clues
I Vein detection → augment image.

11 Introduction



Scenario example - the eye surgery system

Hardware components

I Robot, Base for moving the RCM, Motor controllers, Pedals - on Ethercat
I Cameras on microscope with USB frame-grabber
I OCT interrogator (distance meas.)
I FBG interrogator (force meas.)
I Needle with OCT fiber and FBG integrated
I PCs

12 Introduction



Scenario example - the eye surgery system

Software components

I Cameras interface
I OCT interface
I Robot and Pedals interface
I FBG interface
I GUI
I Auditory cues
I Image processing

I Distance estimation via OCT
data.

I Robot control (different control
modes)

I Puncture detection via FBG
I Supervisor(s)

13 Introduction



Structure of the system

Stereo-Camera
Microscope

OCT
Interrogator

Control

FBG
Interrogator

Interface

PedalsEye Surgery Robot
and Base

Interface Interface Interface Interface

Monitor Puncture
Detection

Vein
reconstruction

Distance
Estimation

User Interface - graphical and auditorySupervisor

14 Introduction



Identify the characteristics

I Which are the requirements of each part?
I Which data are required/provided, and how?
I Which are the steps to bring the system up?
I Is there a specific schedule?
I Is each system reliable? is it possible to measure?

15 Introduction



Identify the concerns

A system can be roughly divided into
5 operations, [2]

I communication,
I computation,
I coordination,
I configuration, and
I composition.

from [10]

16 Introduction



Outline

1 Overview of the Course

2 Modelling a complex system

3 The Process of integration

17 Introduction



Top-Down system decomposition

The system should be decomposed
iteratively in functional units
Eye Surgery system:

I Robotic system
• robot interface
• robot control

- Locking (position) control
- Tremor filtering (damping) control

• base control
I . . .

18 Introduction



Top-Down system decomposition

Each system has one or more functionalities
Algorithms that compute:

I Kinematics
I Control actions
I Estimate of states of the environment
I . . .

19 Introduction



Top-Down system decomposition

Each system/functionality has a context that

I Define the data that are “hidden” in the component
• Configuration Parameters
• States
• . . .

I Define the data that are exposed
I Define the data that are needed

20 Introduction



Top-Down system decomposition

Each system/functionality needs to be triggered:

I Periodically?
I When new data arrives?
I Whenever there is time?

21 Introduction



Example – Dynamical System

Computation
Algorithms implemented in some
language.
Each algorithm is the collection and
interconnection of general-purpose
functionalities/libraries.

F(u,x)

1/z

22 Introduction



Example – Dynamical System

Context
Each algorithm needs data input and
data output, plus persistent data
(states). The context defines which is
the boundary of these data.
Context enables modularity.

F(u,x)

1/z

23 Introduction



Example – Dynamical System

Activities
When these functions are called?

F(u,x)

1/z

24 Introduction



Top-Down system decomposition

Each system has (common) Life Cycle

I Operations that are needed to start-up.
I Different states that system should

transition to.
I Conditions that trigger transitions.

25 Introduction



Top-Down system decomposition

Each system can have a specific Life
Cycle
Example: MaxPos Maxon ethercat motor
driver:

I It has the states of each ethercat
slave.

I It has its own states (in figure).

26 Introduction



Constraints of the subsystem

Each subsystem has specific requirements

I Input of data
I Timing of inputs
I State of the other components
I . . .

27 Introduction



Plan the work

Provide documentation

Rule out ambiguities

Iterate until consensus

28 Introduction



Plan the work

Provide documentation

I interfaces
I offered capabilities
I required capabilities
I (risks)

Rule out ambiguities

Iterate until consensus

28 Introduction



Plan the work

Provide documentation

Rule out ambiguities

I units,
I order,
I definitions,
I . . .

→ agree on a model.

Iterate until consensus

28 Introduction



Plan the work

Provide documentation

Rule out ambiguities

Iterate until consensus
Verification that all the pieces works (in line of principle)

28 Introduction



Recap - system decomposition

So far:
We agreed and documented

I functional decomposition in sub-systems, recursively
I breakdown of life cycles
I breakdown of requirements and capabilities

29 Introduction



Bottom-Up system composition

To do
for each level we:

I Implement (following the
specification)
• Connect ?
• Synchronise ?

I Verify (vs. specification) possibly
with unit testing

30 Introduction



One step back to the 5Cs (before implementation)

Communication

I Frequency ?
I Real time ?
I Size/Buffer ?

Coordination

I Synchronize
I Scheduling

Configuration

I Offline
I Online

Computation

I Real time?

Composition

Some operations that are common to all the subsystems
Re-use of same libraries/infrastructure!

31 Introduction



One step back to the 5Cs (before implementation)

Communication

I Frequency ?
I Real time ?
I Size/Buffer ?

Coordination

I Synchronize
I Scheduling

Configuration

I Offline
I Online

Computation

I Real time?

Composition

Some operations that are common to all the subsystems
Re-use of same libraries/infrastructure!

31 Introduction



Introspection

Introspection is the ability of a (sub-)system to make explicit its state.
I the life cycle is the first approximation
I Systems may have more complex/nested state → Explicit Modelling
I Systems should make aware other systems of their state for

• logging and
• feedback on coordination, fault recovery.

32 Introduction



Monitoring

Monitors can evaluate:
I The state of world - from continuous domain to symbolic information
I The state of systems

• watch-dog
• compare output with expected output

33 Introduction



Choice of tool(s)

Depending by the characteristics of each of the 5C, each part of the
subsystem can rely on different tools, mainly offered by:

I Language
I Library

34 Introduction



Choice of tool(s)

Language

I Low-level, strongly-typed languages offers deterministic performances.
I Scripting languages are normally good for deployment (e.g. Lua) or

non-realtime tasks (e.g. Python).
I Some languages are better supported by libraries (e.g. Python) or for

specific tasks.

35 Introduction



Choice of tool(s)

Libraries - computation
Stand-alone libraries (that depends also by language) Some examples:

I Kinematics: KDL, expressionGraph, . . .
I Math/Albegra: Eigen, LAPACK, numpy, . . .
I Visualization: Qt, pyside, pyqtgraph, . . .
I Optmization: qpOASES, Casadi, . . .

Important!
Choose wisely, because these are strong dependencies. . .

36 Introduction



Choice of tool(s)

Libraries - communication, synchronisation, configuration, deployment.
This is typically a layer offered by a middle-ware. Some examples:

I ROS, ROS 2 [9]
I Orocos [1]

I Yarp [3]
I Miro [8]

I Taste [6, 7]
I MicroBLX [4]

Inter-process communication middle-ware that can be applied to robotics:
I ZeroMQ,
I Corba

Refer to [5] for more example.

37 Introduction



Implementation

Algorithm

I Independent – no unnecessary
dependencies with e.g. the
middle-ware

I Isolated – It does a single thing,
limit side effects

I Testable – make unit tests, if
possible.

I Documented !

38 Introduction



Implementation

Composition of Algorithms

I Does the algorithm has a life
cycle ?

I Is it shared with others ?
I Data flow follows a strict

causality ?
I Coordination ?

Division (or not) into activities and contexts !

39 Introduction



Implementation

Composition of Algorithms – Example

1 HW interface of robot – data in
2 Forward kinematics
3 Control action in user (Cartesian) space
4 Inverse/Transpose Differential kinematics
5 Control action in joint space
6 Safety control
7 HW interface of robot – data out

40 Introduction



Implementation

Composition of Algorithms – Result
From outside, is a system with

I a functionality
I a life cycle
I a data flow
I a “behavioural” interface
I a trigger
I a configuration interface

from [10]

41 Introduction



Composition of systems

Systems can be deployed

I in the same process
I in the same machine (IPC will be needed)
I in different machines

Issues of composition: communication and coordination

I Data sharing mechanism: latency, bandwidth, jitter, RT
I Explicit scheduling
I Additional coordination

42 Introduction



Composition of systems

Implementation – Ideally
From outside, is a system with

I a functionality - given by other
system

I a life cycle
I a data flow
I a “behavioural” interface
I a trigger
I a configuration interface from [10]

43 Introduction



Composition of systems

Implementation – In reality
Some aspects lack support for scaling

I behaviour are integrated
I communication is flat
I synchronization is flat
I introspection tooling is very

limited
I . . .

from [10]

44 Introduction



Verification

After each composition

I Verify (vs. specification) possibly
with unit testing

I Document
if verification fails:

I Correct, or
I Relax specification, if possible.

45 Introduction



Questions ?



Groups



Bibliography I

[1] H. Bruyninckx. “Open robot control software: the OROCOS project”.
In: Proceedings 2001 ICRA. IEEE International Conference on Robotics
and Automation (Cat. No.01CH37164). Vol. 3. May 2001, 2523–2528
vol.3. doi: 10.1109/ROBOT.2001.933002.

[2] Herman Bruyninckx et al. “The BRICS Component Model: A
Model-Based Development Paradigm for Complex Robotics Software
Systems”. In: Mar. 2013, pp. 1758–1764. isbn: 9781450316569. doi:
10.1145/2480362.2480693.

[3] Paul Fitzpatrick et al. “A middle way for robotics middleware”. In:
Journal of Software Engineering for Robotics 5.2 (2014).

1 Introduction

http://dx.doi.org/10.1109/ROBOT.2001.933002
http://dx.doi.org/10.1145/2480362.2480693


Bibliography II
[4] markus Klotzbücher. microblx: real-time, embedded, reflective function

blocks. https://github.com/kmarkus/microblx.
[5] N. Mohamed, J. Al-Jaroodi, and I. Jawhar. “Middleware for Robotics: A

Survey”. In: 2008 IEEE Conference on Robotics, Automation and
Mechatronics. Sept. 2008, pp. 736–742. doi:
10.1109/RAMECH.2008.4681485.

[6] M. Perrotin et al. “Taste: A real-time software engineering tool-chain
overview, status, and future”. In: SDL Forum. 2011.

[7] TASTE. http://taste.tuxfamily.org. online - visited October 2019. 2019.
[8] H. Utz et al. “Miro - middleware for mobile robot applications”. In:

IEEE Transactions on Robotics and Automation 18.4 (Aug. 2002),
pp. 493–497. doi: 10.1109/TRA.2002.802930.

2 Introduction

https://github.com/kmarkus/microblx
http://dx.doi.org/10.1109/RAMECH.2008.4681485
http://dx.doi.org/10.1109/TRA.2002.802930


Bibliography III
[9] V.A. Robot Operating System (ROS): The Complete Reference (Volume

3). Ed. by Anis Koubaa. Vol. 778. Studies in Computational
Intelligence. Cham: Springer, 2018. isbn: 978-3-319-91589-0. doi:
10.1007/978-3-319-91590-6.

[10] Dominick Vanthienen, Markus Klotzbücher, and Herman Bruyninckx.
“The 5C-based architectural Composition Pattern: lessons learned from
re-developing the iTaSC framework for constraint-based robot
programming”. eng. In: JOSER: Journal of Software Engineering for
Robotics 5.1 (2014), pp. 17–35. issn: 2035-3928.

3 Introduction

http://dx.doi.org/10.1007/978-3-319-91590-6

	Overview of the Course
	Modelling a complex system
	The Process of integration
	Appendix

