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Practical infos

Where
KU Leuven

When
24-28 of February 2020

Who

I Gianni Borghesan (KUL)
I Diego Dall’ Alba (UNIVR)
I Albert Hernansanz (UPC)

Preparation

I A PC (also VM) with Ubuntu 16 +
Ros Kinetic + Orocos

I Group: General concept of the system
I Individual: pitch presentation a

description of the module that you
would integrate (behaviour, life-cycle,
data exchanged) – after this
presentation.
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Schedule

Monday to Thursday

I Two morning sessions of 1.5 hours (9:30-11:00, 11:15 - 12:45)
I Afternoon: practical sessions & Integration (2PM - 5:30PM or later)

Friday

I Morning - Integration
I Afternoon - Evaluation (close around 4PM)
I Happy Hour
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Schedule
S# Title Description Who
1 Introduction Presentation of the course, Overview of the

integration process, ESR presentations,
GB, All

2 Modular integra-
tion

Modular integration, Review of modules
and group definition

HA

A ROS +Practical ROS intro, ROS hands-on 1 DDA
3 Real Time RT systems, Scheduling, Link to Control GB
4 Middleware 2 OROCOS (with ROS Integration) GB
B Practical OROCOS hands-on, Integration.
5 Best practices in

programming
Programming in Safety-Critical systems,
revisioning.

AH

GB: Gianni Borghesan (KUL). DDA: Diego Dall’ Alba (UNIVR), AH: Albert Hernansanz (UPC)
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Schedule
S# Title Description Who
6 Data Visualiza-

tion
Data recording and display. DDA GB

C Practical ROS hands-on 2, teleop. example, inte-
gration.

AH

7 Visualization Data Visualization in medical applications,
sensor registering.

DDA

8 HRI how to convey information, haptic feed-
back teleop, virtual and augmented reality.

AH

D Practical Integration
E Practical Integration
F Evaluation Evaluation and Feedback

GB: Gianni Borghesan (KUL). DDA: Diego Dall’ Alba (UNIVR), AH: Albert Hernansanz (UPC)
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Goal of the week
Provide the fundamental notions of:

I How to approach integration
I Software integration of complex system, consisting of:

• Hardware interfaces,
• (RT) control,
• Data treatment (classification, reconstruction),
• Decision-making systems,
• User Interfaces.

I Tools and Libraries for robotic software development.
I Software development management.
I Real-Time and scheduling.
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Scenario example - the eye surgery system

Goal
Enable the cannulation of retinal veins, and inject a drug via a 30 µm O.D.
needle

Issues

I Tremor of hand
I Eye ball movement due to force on sclera
I Long infusion time (5 to 30 min)
I poor depth perception with the stereo microscope
I double puncture: injection in the retina
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Eye surgery Robotic System

9 Introduction



Scenario example - the eye surgery system

Desired features - Mechanical

I Comanipulation system
I Tremor filtering - variable damping
I (Adjustable) Remote Center of Motion
I Locking system
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Scenario example - the eye surgery system

Desired features - Augmented perception

I Distance measurement retina/needle → auditory clues
I Puncture detection → auditory clues
I Vein detection → augment image.
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Scenario example - the eye surgery system

Hardware components

I Robot, Base for moving the RCM, Motor controllers, Pedals - on Ethercat
I Cameras on microscope with USB frame-grabber
I OCT interrogator (distance meas.)
I FBG interrogator (force meas.)
I Needle with OCT fiber and FBG integrated
I PCs
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Scenario example - the eye surgery system

Software components

I Cameras interface
I OCT interface
I Robot and Pedals interface
I FBG interface
I GUI
I Auditory cues
I Image processing

I Distance estimation via OCT
data.

I Robot control (different control
modes)

I Puncture detection via FBG
I Supervisor(s)
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Structure of the system

Stereo-Camera
Microscope

OCT
Interrogator

Control

FBG
Interrogator

Interface

PedalsEye Surgery Robot
and Base

Interface Interface Interface Interface

Monitor Puncture
Detection

Vein
reconstruction

Distance
Estimation

User Interface - graphical and auditorySupervisor
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Identify the characteristics

I Which are the requirements of each part?
I Which data are required/provided, and how?
I Which are the steps to bring the system up?
I Is there a specific schedule?
I Is each system reliable? is it possible to measure?
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Identify the concerns

A system can be roughly divided into
5 operations, [2]

I communication,
I computation,
I coordination,
I configuration, and
I composition.

from [10]
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Top-Down system decomposition

The system should be decomposed
iteratively in functional units
Eye Surgery system:

I Robotic system
• robot interface
• robot control

- Locking (position) control
- Tremor filtering (damping) control

• base control
I . . .
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Top-Down system decomposition

Each system has one or more functionalities
Algorithms that compute:

I Kinematics
I Control actions
I Estimate of states of the environment
I . . .
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Top-Down system decomposition

Each system/functionality has a context that

I Define the data that are “hidden” in the component
• Configuration Parameters
• States
• . . .

I Define the data that are exposed
I Define the data that are needed
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Top-Down system decomposition

Each system/functionality needs to be triggered:

I Periodically?
I When new data arrives?
I Whenever there is time?
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Example – Dynamical System

Computation
Algorithms implemented in some
language.
Each algorithm is the collection and
interconnection of general-purpose
functionalities/libraries.

F(u,x)

1/z
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Example – Dynamical System

Context
Each algorithm needs data input and
data output, plus persistent data
(states). The context defines which is
the boundary of these data.
Context enables modularity.

F(u,x)

1/z

23 Introduction



Example – Dynamical System

Activities
When these functions are called?

F(u,x)

1/z
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Top-Down system decomposition

Each system has (common) Life Cycle

I Operations that are needed to start-up.
I Different states that system should

transition to.
I Conditions that trigger transitions.

25 Introduction



Top-Down system decomposition

Each system can have a specific Life
Cycle
Example: MaxPos Maxon ethercat motor
driver:

I It has the states of each ethercat
slave.

I It has its own states (in figure).
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Constraints of the subsystem

Each subsystem has specific requirements

I Input of data
I Timing of inputs
I State of the other components
I . . .
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Plan the work

Provide documentation

Rule out ambiguities

Iterate until consensus
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Plan the work

Provide documentation

I interfaces
I offered capabilities
I required capabilities
I (risks)

Rule out ambiguities

Iterate until consensus
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Plan the work

Provide documentation

Rule out ambiguities

I units,
I order,
I definitions,
I . . .

→ agree on a model.

Iterate until consensus
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Plan the work

Provide documentation

Rule out ambiguities

Iterate until consensus
Verification that all the pieces works (in line of principle)
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Recap - system decomposition

So far:
We agreed and documented

I functional decomposition in sub-systems, recursively
I breakdown of life cycles
I breakdown of requirements and capabilities
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Bottom-Up system composition

To do
for each level we:

I Implement (following the
specification)
• Connect ?
• Synchronise ?

I Verify (vs. specification) possibly
with unit testing
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One step back to the 5Cs (before implementation)

Communication

I Frequency ?
I Real time ?
I Size/Buffer ?

Coordination

I Synchronize
I Scheduling

Configuration

I Offline
I Online

Computation

I Real time?

Composition

Some operations that are common to all the subsystems
Re-use of same libraries/infrastructure!
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Introspection

Introspection is the ability of a (sub-)system to make explicit its state.
I the life cycle is the first approximation
I Systems may have more complex/nested state → Explicit Modelling
I Systems should make aware other systems of their state for

• logging and
• feedback on coordination, fault recovery.

32 Introduction



Monitoring

Monitors can evaluate:
I The state of world - from continuous domain to symbolic information
I The state of systems

• watch-dog
• compare output with expected output
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Choice of tool(s)

Depending by the characteristics of each of the 5C, each part of the
subsystem can rely on different tools, mainly offered by:

I Language
I Library
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Choice of tool(s)

Language

I Low-level, strongly-typed languages offers deterministic performances.
I Scripting languages are normally good for deployment (e.g. Lua) or

non-realtime tasks (e.g. Python).
I Some languages are better supported by libraries (e.g. Python) or for

specific tasks.
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Choice of tool(s)

Libraries - computation
Stand-alone libraries (that depends also by language) Some examples:

I Kinematics: KDL, expressionGraph, . . .
I Math/Albegra: Eigen, LAPACK, numpy, . . .
I Visualization: Qt, pyside, pyqtgraph, . . .
I Optmization: qpOASES, Casadi, . . .

Important!
Choose wisely, because these are strong dependencies. . .
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Choice of tool(s)

Libraries - communication, synchronisation, configuration, deployment.
This is typically a layer offered by a middle-ware. Some examples:

I ROS, ROS 2 [9]
I Orocos [1]

I Yarp [3]
I Miro [8]

I Taste [6, 7]
I MicroBLX [4]

Inter-process communication middle-ware that can be applied to robotics:
I ZeroMQ,
I Corba

Refer to [5] for more example.
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Implementation

Algorithm

I Independent – no unnecessary
dependencies with e.g. the
middle-ware

I Isolated – It does a single thing,
limit side effects

I Testable – make unit tests, if
possible.

I Documented !
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Implementation

Composition of Algorithms

I Does the algorithm has a life
cycle ?

I Is it shared with others ?
I Data flow follows a strict

causality ?
I Coordination ?

Division (or not) into activities and contexts !
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Implementation

Composition of Algorithms – Example

1 HW interface of robot – data in
2 Forward kinematics
3 Control action in user (Cartesian) space
4 Inverse/Transpose Differential kinematics
5 Control action in joint space
6 Safety control
7 HW interface of robot – data out
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Implementation

Composition of Algorithms – Result
From outside, is a system with

I a functionality
I a life cycle
I a data flow
I a “behavioural” interface
I a trigger
I a configuration interface

from [10]
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Composition of systems

Systems can be deployed

I in the same process
I in the same machine (IPC will be needed)
I in different machines

Issues of composition: communication and coordination

I Data sharing mechanism: latency, bandwidth, jitter, RT
I Explicit scheduling
I Additional coordination
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Composition of systems

Implementation – Ideally
From outside, is a system with

I a functionality - given by other
system

I a life cycle
I a data flow
I a “behavioural” interface
I a trigger
I a configuration interface from [10]
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Composition of systems

Implementation – In reality
Some aspects lack support for scaling

I behaviour are integrated
I communication is flat
I synchronization is flat
I introspection tooling is very

limited
I . . .

from [10]
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Verification

After each composition

I Verify (vs. specification) possibly
with unit testing

I Document
if verification fails:

I Correct, or
I Relax specification, if possible.
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Questions ?



Groups
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