
Best Practices in integrating complex robotic systems

RT systems, Scheduling, Link to
Control

Gianni Borghesan
KU Leuven
Febraury 2019

Outline

1 RT systems

2 Scheduling

3 Link with Control

1 RT systems, Scheduling, Link to Control

Real Time Systems Definition:

RT-systems are

1) systems whose correct working depends not only by the
correctiveness of output, but also by the timing of such output

2) System that emulate a physical behaviour over time

3) System that produces output with no significant delay

2 RT systems, Scheduling, Link to Control

Real Time Systems Definition:

RT-systems are

1) systems whose correct working depends not only by the
correctiveness of output, but also by the timing of such output

2) System that emulate a physical behaviour over time

3) System that produces output with no significant delay

2 RT systems, Scheduling, Link to Control

Where RT-systems are needed (some examples)

I critical-safe applications
• Traffic control (airplane and trains)
• Stock exchange

I (critical-safe) mechatronic/control applications
• Avionics-aereospace, automotive,
• industrial/power plants, power grid

I Applications with quality of service
• Communication
• digital signal processing (e.g. audio recording)

3 RT systems, Scheduling, Link to Control

What makes a system realtime

Determinism
A RT-system produce an output before a given time (dead-line) from a
trigger.

Note that a realtime system timing is not exact.

4 RT systems, Scheduling, Link to Control

The dead-line

It must suffice that a result is
achieved before the dead-line. The
Response Time is composed by a

I Computation – an upper-bounded
or exact time,

I Jitter – an upper-bound time,
often statistically described –
computation, communication
latency, task switching, . . .

Environment

RT System

time

Response time
Dead-line

5 RT systems, Scheduling, Link to Control

Missing the dead-line

Hard dead-line
Missing the deadline brings to potentially catastrophic effects

Firm dead-line
Missing the deadline invalidates the result connected with such deadline

Soft dead-line
Missing the deadline does not invalidate the result, however there is a
degradation of the “service”

6 RT systems, Scheduling, Link to Control

RT Vs Non-RT systems

Guaranteed Timeliness

I Computational load hypothesis is available
I Temporal correctness can be shown analytically
I Coverage must be complete

Best effort

I Analytical argument for temporal correctness cannot be made.
I The temporal verification relies on probabilistic arguments, even within

the specified load hypothesis

7 RT systems, Scheduling, Link to Control

RT system elements

I Hardware adequate resources - the system must be dimensioned for the
worst case scenario.

I Real Time OS
I Real Time communication
I Real Time -compliant programming

8 RT systems, Scheduling, Link to Control

RT Operative System

I Allows some process/thread to be shielded from interrupts
I Allows for pre-emption
I Allows for reserving a resource to a specific task

Or no operative system !

Some RTOS for desktops:
I QNX
I RTAI
I XENOMAI

I VXWorks
I Real-time Linux

(CONFIG RT PREEMPT)

see https://en.wikipedia.org/wiki/Comparison of real-time operating systems

9 RT systems, Scheduling, Link to Control

https://en.wikipedia.org/wiki/Comparison_of_real-time_operating_systems

RT communication
RT communication protocol requires

I determinism
I synchronization
I security

Some RT protocols
I CAN – Control Area Network
I Profibus – Process Field Bus
I AFDX – Avionics Full-Duplex

Switched Ethernet

I TTP - Time-Triggered Protocol
I FlexRay
I Real-Time Ethernet (e.g.

Powerlink, Ethercat)

10 RT systems, Scheduling, Link to Control

Concurrent Programming

Concurrency means that more “Activities” have to run together, with limited
resources.
Activities can implemented with

I Processes - different memory
I Multi-threaded process - share the same memory/address space (but each

one has his stack - private memory)

Question:
Concurrency == Parallel Execution ?

11 RT systems, Scheduling, Link to Control

Concurrent Programming

Concurrency means that more “Activities” have to run together, with limited
resources.
Activities can implemented with

I Processes - different memory
I Multi-threaded process - share the same memory/address space (but each

one has his stack - private memory)

Question:
Concurrency == Parallel Execution ?

11 RT systems, Scheduling, Link to Control

Concurrent Programming - communication

Inter-Process Communication

I signals
I semaphores
I shared memory (e.g. shm open)
I queue (e.g.mq open)
I files
I sockets

Threads Communication

I shared memory
I mutex (pthread mutex *)

sync on data access
I conditions (pthread cond *)

sync on data access and value

12 RT systems, Scheduling, Link to Control

Basic multitreading with posix
#include <s t d i o . h>
#include <s t d l i b . h>
#include <pth read . h>
void ∗ p r i n t m e s s a g e f u n c t i o n (void ∗ p t r) {

char ∗ message ;
message = (char ∗) p t r ;
p r i n t f ("%s␣\n" , message) ;

}
main (){

p t h r e a d t thread1 , th r ead2 ;
char ∗ message1 = "Thread␣1" ;
char ∗ message2 = "Thread␣2" ;
int i r e t 1 , i r e t 2 ;
/* Create independent threads each of which will execute function */

i r e t 1 = p t h r e a d c r e a t e (&thread1 , NULL , p r i n t m e s s a g e f u n c t i o n , (void ∗) message1) ;
i r e t 2 = p t h r e a d c r e a t e (&thread2 , NULL , p r i n t m e s s a g e f u n c t i o n , (void ∗) message2) ;

/* Wait till threads are complete before main continues. */

p t h r e a d j o i n (thread1 , NULL) ;
p t h r e a d j o i n (thread2 , NULL) ;
e x i t (0) ;

}

http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html
13 RT systems, Scheduling, Link to Control

http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html

Basic atomic actions with posix
#include <s t d i o . h>
#include <s t d l i b . h>
#include <pth read . h>

void ∗ f u n c t i o n C (){
p t h r e a d m u t e x l o c k (&mutex1) ;
c o u n t e r++;
p r i n t f ("Counter␣value:␣%d\n" , c o u n t e r) ;
p t h r e a d m u t e x u n l o c k (&mutex1) ;

}
p t h r e a d m u t e x t mutex1 = PTHREAD MUTEX INITIALIZER ;
int c o u n t e r = 0 ;

main (){
int rc1 , r c2 ;
p t h r e a d t thread1 , th r ead2 ;
/* Create independent threads each of which will execute functionC */
r c1=p t h r e a d c r e a t e (&thread1 , NULL , &funct i onC , NULL)))
r c2=p t h r e a d c r e a t e (&thread2 , NULL , &funct i onC , NULL)))

p t h r e a d j o i n (thread1 , NULL) ;
p t h r e a d j o i n (thread2 , NULL) ;
e x i t (0) ;

}

http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html
14 RT systems, Scheduling, Link to Control

http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html

RT Programming

Also the program needs to adhere to some rules; each program has at least 3
steps

Initialization
Non RT, setup communication, claim memory if not statically allocated.

Running
(Real time) execution of the algorithm(s)

Clean-up
Close communication, close files in a coherent state, clean-up memory

15 RT systems, Scheduling, Link to Control

RT Programming

Issues:
I Algorithm must have upper-bounded Worst-Case Execution Time (WCET)
I Some system call are not RT-Safe

• memory allocation (but see also TLSF allocator, [2])
• file access
• writing in a console

Issues from concurrent programming:
I Concurrency
I (Dead-)Lock

16 RT systems, Scheduling, Link to Control

RT Programming – Concurrent Programming

Concurrency means that more threads/processes has to share the same
resource (CPU Time) in a non-exclusive way.
Some type of scheduling must be applied to solve the concurrency, respecting
the deadlines.
Concurrency means that the threads/processes exchange

I data
I events

Typical problems:
I Concurrent access to data protected by mutex (mutual exclusion)
I Wait for data

17 RT systems, Scheduling, Link to Control

Outline

1 RT systems

2 Scheduling

3 Link with Control

18 RT systems, Scheduling, Link to Control

Scheduling

The study of schedulability assumes 3 steps:
I task models
I Scheduling algorithm
I (Schedulability test for Worst Case Scenario (WCS))

19 RT systems, Scheduling, Link to Control

Scheduling Algorithms

Model of tasks

I Periodic (or synchronous) task - hard deadline
Parameters : Ti period, Di deadline Ci WCET

I Sporadic (or Asynchronous) tasks - hard deadline
Parameters : Di deadline Ci WCET

I Soft or no deadline tasks.
All tasks can have priorities

20 RT systems, Scheduling, Link to Control

Scheduling Algorithms

Types of scheduling

I best effort vs Guaranteed
I static vs dynamic
I Preemptive versus non-preemptive
I Single-processor versus multi-processor

21 RT systems, Scheduling, Link to Control

Fixed-Priority Scheduling (FPS)

I Each task has a static priority
I Priorities of ready tasks determine the execution order of tasks
I Priorities are derived from temporal requirements

Can be done only with periodic tasks

22 RT systems, Scheduling, Link to Control

Fixed-priority pre-emptive scheduling (FPPS)

Is a scheduling system commonly used in real-time systems.
I Each task has a static priority
I Each task in execution can be pre-empted by a higher priority task that is

ready
I We can have starvation

23 RT systems, Scheduling, Link to Control

Fixed-priority pre-emptive scheduling (FPPS)

24 RT systems, Scheduling, Link to Control

Rate-Monotonic Scheduling (RMS)

I Fixed priority scheduling, preemptive
I Rate-monotonic priority assignment: The shorter the period (= the higher

the rate) of a task, the higher its priority
if there are only periodic tasks this is a fixed scheduling.

25 RT systems, Scheduling, Link to Control

Earliest Deadline First Scheduling (EDF)

I No priority, No Pre-emption
I Absolute deadlines determine the execution order of the tasks
I Selection function: the task with the earliest absolute deadline is selected

to execute next
Unpredictable - can cause a domino effect

26 RT systems, Scheduling, Link to Control

Least-Laxity First Scheduling (LLF)

I Laxity: Difference between deadline and remaining computation time
I Selection function: The task with the smallest laxity gets the highest

(dynamic) priority and is therefore selected for executing next
“Optimal” in single processor, periodic task scenario.

27 RT systems, Scheduling, Link to Control

Outline

1 RT systems

2 Scheduling

3 Link with Control

28 RT systems, Scheduling, Link to Control

Very simple mechatronic system

A/D D/AControl Law

ActuatorSensor Plant

It has only one activity at time – unluckily, the one-actuator model is not very
realistic. . .

29 RT systems, Scheduling, Link to Control

A more realistic mechatronic system

It is composed:
I one or more hardware interfaces

• minimal loops in external harware (e.g. direct torque control), to
• complete system providing RPC (e.g. robot with trajectory planner), via (RT)

digital communication
I one or more sensors, that produce data at different time.
I critical-safe computations
I other computations (also non-deterministic)

30 RT systems, Scheduling, Link to Control

Example – mobile robot navigation

I Contexts in green
I Activities as triangle
I Async activities as red arrows
I data flow in gray arrows

UI
LIDAR
Sensor

Wheel
Interface In

SLAM Planning

Path Following
Obstacle Avoidance

Wheel
Interface Out

20

200

Interface SLAM PF-OA

DT=1/200
Time

planning, UI

31 RT systems, Scheduling, Link to Control

Example – mobile robot navigation

Priorities:
1 The robot interface must run at

nominal frequency.
2 Control action must be ready

before deadline.
3 The lidar sensor should be read as

soon as possible, without
interfering the control loop

4 UI should be updated asap.
5 This planning is not deterministic

in time.

UI
LIDAR
Sensor

Wheel
Interface In

SLAM Planning

Path Following
Obstacle Avoidance

Wheel
Interface Out

20

200

Interface SLAM PF-OA

DT=1/200
Time

planning, UI

32 RT systems, Scheduling, Link to Control

Example – mobile robot navigation

1 RT-high priority, periodic for
robot interface

2 Async RT- high priority for SLAM
and PF-OA

3 RT-medium priority, periodic for
LIDAR

4 (RT-) low priority for the rest.

UI
LIDAR
Sensor

Wheel
Interface In

SLAM Planning

Path Following
Obstacle Avoidance

Wheel
Interface Out

20

200

Interface SLAM PF-OA

DT=1/200
Time

planning, UI

33 RT systems, Scheduling, Link to Control

Example – lazy scheduling

Which would be the worst case scenario
timing?

I PF-OA, SLAM, interface – 200 ms
I PF-OA, SLAM, interface – 200 ms
I PF-OA, SLAM, interface – 200 ms

Wheel
Interface In

SLAM

Path Following
Obstacle Avoidance

Wheel
Interface Out

200 200

200

34 RT systems, Scheduling, Link to Control

Example – lazy scheduling

Which would be the worst case scenario
timing?

I PF-OA, SLAM, interface – 200 ms

I PF-OA, SLAM, interface – 200 ms
I PF-OA, SLAM, interface – 200 ms

Wheel
Interface In

SLAM

Path Following
Obstacle Avoidance

Wheel
Interface Out

200 200

200

34 RT systems, Scheduling, Link to Control

Example – lazy scheduling

Which would be the worst case scenario
timing?

I PF-OA, SLAM, interface – 200 ms
I PF-OA, SLAM, interface – 200 ms

I PF-OA, SLAM, interface – 200 ms

Wheel
Interface In

SLAM

Path Following
Obstacle Avoidance

Wheel
Interface Out

200 200

200

34 RT systems, Scheduling, Link to Control

Example – lazy scheduling

Which would be the worst case scenario
timing?

I PF-OA, SLAM, interface – 200 ms
I PF-OA, SLAM, interface – 200 ms
I PF-OA, SLAM, interface – 200 ms

Wheel
Interface In

SLAM

Path Following
Obstacle Avoidance

Wheel
Interface Out

200 200

200

600 ms in place of 200 ms

34 RT systems, Scheduling, Link to Control

Discretization of signals

Sensors produces two type of signals
I continuous (e.g. voltage of train gauges)
I discrete (e.g. encoder pulse)

The latter case needs a Discretization/Quantization process :

35 RT systems, Scheduling, Link to Control

Communication of signals

Good transmission
More or less fixed lantency, that is a fraction of the discretization time.

x̂[t] = x[t+ δt], t ∈ ∆T · i, i ∈ N , δt << ∆T

Bad transmission

I High Latency
I Buffering - time warping of the data

36 RT systems, Scheduling, Link to Control

System discretization

When discretizing a system for e.g. design of controllers, we assume
I to know the rate it runs
I that data arrives at the same rate (otherwise account for delay)

To discretize a linear dynamical system a well know approach is to use the the
Tustin discretization method

C(s) = b0s
n−1 + · · ·+ bn−1

sn + a0sn−1 + · · ·+ an−1
⇒ s = 2

T

z − 1
z + 1 ⇒ Cd(Z)

37 RT systems, Scheduling, Link to Control

Time is crucial !
Example: the maximum stiffness K achievable by an haptic interface with
damping b interacting with a virtual wall is a function of ∆T [1]:

b ≤ K ∆T
2

If ∆T varies, the system becomes unstable.

38 RT systems, Scheduling, Link to Control

Take-home messages

I Timing is very important whenever you have control loops
I timing issue can come from non-RT OS, not enough resources, bad

programming, communication issues.
I Even if you do not make an explicit derivation of your control but tune

”rule of thumb”, if rates changes, the system can become unstable.
I better to consider these problems before than try to debug ”strange

behaviours” after.

39 RT systems, Scheduling, Link to Control

Questions ?

Bibliography I

[1] N. Diolaiti et al. “Stability of Haptic Rendering: Discretization,
Quantization, Time Delay, and Coulomb Effects”. In: Trans. Rob. 22.2
(Apr. 2006), pp. 256–268. issn: 1552-3098. doi:
10.1109/TRO.2005.862487. url:
https://doi.org/10.1109/TRO.2005.862487.

[2] M. Masmano et al. “TLSF: a new dynamic memory allocator for real-time
systems”. In: Proceedings. 16th Euromicro Conference on Real-Time
Systems, 2004. ECRTS 2004. July 2004, pp. 79–88. doi:
10.1109/EMRTS.2004.1311009.

1 RT systems, Scheduling, Link to Control

http://dx.doi.org/10.1109/TRO.2005.862487
https://doi.org/10.1109/TRO.2005.862487
http://dx.doi.org/10.1109/EMRTS.2004.1311009

	RT systems
	 Scheduling
	Link with Control
	Appendix

