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Real Time Systems Definition:

RT-systems are

1) systems whose correct working depends not only by the
correctiveness of output, but also by the timing of such output

2) System that emulate a physical behaviour over time

3) System that produces output with no significant delay
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Where RT-systems are needed (some examples)

I critical-safe applications
• Traffic control (airplane and trains)
• Stock exchange

I (critical-safe) mechatronic/control applications
• Avionics-aereospace, automotive,
• industrial/power plants, power grid

I Applications with quality of service
• Communication
• digital signal processing (e.g. audio recording)
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What makes a system realtime

Determinism
A RT-system produce an output before a given time (dead-line) from a
trigger.

Note that a realtime system timing is not exact.
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The dead-line

It must suffice that a result is
achieved before the dead-line. The
Response Time is composed by a

I Computation – an upper-bounded
or exact time,

I Jitter – an upper-bound time,
often statistically described –
computation, communication
latency, task switching, . . .

Environment

RT System

time

Response time
Dead-line
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Missing the dead-line

Hard dead-line
Missing the deadline brings to potentially catastrophic effects

Firm dead-line
Missing the deadline invalidates the result connected with such deadline

Soft dead-line
Missing the deadline does not invalidate the result, however there is a
degradation of the “service”
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RT Vs Non-RT systems

Guaranteed Timeliness

I Computational load hypothesis is available
I Temporal correctness can be shown analytically
I Coverage must be complete

Best effort

I Analytical argument for temporal correctness cannot be made.
I The temporal verification relies on probabilistic arguments, even within

the specified load hypothesis
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RT system elements

I Hardware adequate resources - the system must be dimensioned for the
worst case scenario.

I Real Time OS
I Real Time communication
I Real Time -compliant programming
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RT Operative System

I Allows some process/thread to be shielded from interrupts
I Allows for pre-emption
I Allows for reserving a resource to a specific task

Or no operative system !

Some RTOS for desktops:
I QNX
I RTAI
I XENOMAI

I VXWorks
I Real-time Linux

(CONFIG RT PREEMPT)

see https://en.wikipedia.org/wiki/Comparison of real-time operating systems
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RT communication
RT communication protocol requires

I determinism
I synchronization
I security

Some RT protocols
I CAN – Control Area Network
I Profibus – Process Field Bus
I AFDX – Avionics Full-Duplex

Switched Ethernet

I TTP - Time-Triggered Protocol
I FlexRay
I Real-Time Ethernet (e.g.

Powerlink, Ethercat)
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Concurrent Programming

Concurrency means that more “Activities” have to run together, with limited
resources.
Activities can implemented with

I Processes - different memory
I Multi-threaded process - share the same memory/address space (but each

one has his stack - private memory)

Question:
Concurrency == Parallel Execution ?
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Concurrent Programming - communication

Inter-Process Communication

I signals
I semaphores
I shared memory (e.g. shm open)
I queue (e.g.mq open)
I files
I sockets

Threads Communication

I shared memory
I mutex (pthread mutex *)

sync on data access
I conditions (pthread cond *)

sync on data access and value
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Basic multitreading with posix
#include <s t d i o . h>
#include <s t d l i b . h>
#include <pth read . h>
void ∗ p r i n t m e s s a g e f u n c t i o n ( void ∗ p t r ) {

char ∗ message ;
message = ( char ∗) p t r ;
p r i n t f ( "%s␣\n" , message ) ;

}
main (){

p t h r e a d t thread1 , th r ead2 ;
char ∗ message1 = "Thread␣1" ;
char ∗ message2 = "Thread␣2" ;
int i r e t 1 , i r e t 2 ;
/* Create independent threads each of which will execute function */

i r e t 1 = p t h r e a d c r e a t e ( &thread1 , NULL , p r i n t m e s s a g e f u n c t i o n , ( void ∗) message1 ) ;
i r e t 2 = p t h r e a d c r e a t e ( &thread2 , NULL , p r i n t m e s s a g e f u n c t i o n , ( void ∗) message2 ) ;

/* Wait till threads are complete before main continues. */

p t h r e a d j o i n ( thread1 , NULL ) ;
p t h r e a d j o i n ( thread2 , NULL ) ;
e x i t ( 0 ) ;

}

http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html
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Basic atomic actions with posix
#include <s t d i o . h>
#include <s t d l i b . h>
#include <pth read . h>

void ∗ f u n c t i o n C (){
p t h r e a d m u t e x l o c k ( &mutex1 ) ;
c o u n t e r++;
p r i n t f ( "Counter␣value:␣%d\n" , c o u n t e r ) ;
p t h r e a d m u t e x u n l o c k ( &mutex1 ) ;

}
p t h r e a d m u t e x t mutex1 = PTHREAD MUTEX INITIALIZER ;
int c o u n t e r = 0 ;

main (){
int rc1 , r c2 ;
p t h r e a d t thread1 , th r ead2 ;
/* Create independent threads each of which will execute functionC */
r c1=p t h r e a d c r e a t e ( &thread1 , NULL , &funct i onC , NULL) ) )
r c2=p t h r e a d c r e a t e ( &thread2 , NULL , &funct i onC , NULL) ) )

p t h r e a d j o i n ( thread1 , NULL ) ;
p t h r e a d j o i n ( thread2 , NULL ) ;
e x i t ( 0 ) ;

}

http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html
14 RT systems, Scheduling, Link to Control

http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html


RT Programming

Also the program needs to adhere to some rules; each program has at least 3
steps

Initialization
Non RT, setup communication, claim memory if not statically allocated.

Running
(Real time) execution of the algorithm(s)

Clean-up
Close communication, close files in a coherent state, clean-up memory
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RT Programming

Issues:
I Algorithm must have upper-bounded Worst-Case Execution Time (WCET)
I Some system call are not RT-Safe

• memory allocation (but see also TLSF allocator, [2])
• file access
• writing in a console

Issues from concurrent programming:
I Concurrency
I (Dead-)Lock
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RT Programming – Concurrent Programming

Concurrency means that more threads/processes has to share the same
resource (CPU Time) in a non-exclusive way.
Some type of scheduling must be applied to solve the concurrency, respecting
the deadlines.
Concurrency means that the threads/processes exchange

I data
I events

Typical problems:
I Concurrent access to data protected by mutex (mutual exclusion)
I Wait for data
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Scheduling

The study of schedulability assumes 3 steps:
I task models
I Scheduling algorithm
I (Schedulability test for Worst Case Scenario (WCS))
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Scheduling Algorithms

Model of tasks

I Periodic (or synchronous) task - hard deadline
Parameters : Ti period, Di deadline Ci WCET

I Sporadic (or Asynchronous) tasks - hard deadline
Parameters : Di deadline Ci WCET

I Soft or no deadline tasks.
All tasks can have priorities
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Scheduling Algorithms

Types of scheduling

I best effort vs Guaranteed
I static vs dynamic
I Preemptive versus non-preemptive
I Single-processor versus multi-processor
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Fixed-Priority Scheduling (FPS)

I Each task has a static priority
I Priorities of ready tasks determine the execution order of tasks
I Priorities are derived from temporal requirements

Can be done only with periodic tasks
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Fixed-priority pre-emptive scheduling (FPPS)

Is a scheduling system commonly used in real-time systems.
I Each task has a static priority
I Each task in execution can be pre-empted by a higher priority task that is

ready
I We can have starvation
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Fixed-priority pre-emptive scheduling (FPPS)
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Rate-Monotonic Scheduling (RMS)

I Fixed priority scheduling, preemptive
I Rate-monotonic priority assignment: The shorter the period (= the higher

the rate) of a task, the higher its priority
if there are only periodic tasks this is a fixed scheduling.
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Earliest Deadline First Scheduling (EDF)

I No priority, No Pre-emption
I Absolute deadlines determine the execution order of the tasks
I Selection function: the task with the earliest absolute deadline is selected

to execute next
Unpredictable - can cause a domino effect
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Least-Laxity First Scheduling (LLF)

I Laxity: Difference between deadline and remaining computation time
I Selection function: The task with the smallest laxity gets the highest

(dynamic) priority and is therefore selected for executing next
“Optimal” in single processor, periodic task scenario.
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Very simple mechatronic system

A/D D/AControl Law

ActuatorSensor Plant

It has only one activity at time – unluckily, the one-actuator model is not very
realistic. . .
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A more realistic mechatronic system

It is composed:
I one or more hardware interfaces

• minimal loops in external harware (e.g. direct torque control), to
• complete system providing RPC (e.g. robot with trajectory planner), via (RT)

digital communication
I one or more sensors, that produce data at different time.
I critical-safe computations
I other computations (also non-deterministic)
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Example – mobile robot navigation

I Contexts in green
I Activities as triangle
I Async activities as red arrows
I data flow in gray arrows

UI
LIDAR
Sensor

Wheel
Interface In

SLAM Planning

Path Following
Obstacle Avoidance

Wheel
Interface Out

20

200

Interface SLAM PF-OA

DT=1/200
Time

planning, UI
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Example – mobile robot navigation

Priorities:
1 The robot interface must run at

nominal frequency.
2 Control action must be ready

before deadline.
3 The lidar sensor should be read as

soon as possible, without
interfering the control loop

4 UI should be updated asap.
5 This planning is not deterministic

in time.

UI
LIDAR
Sensor

Wheel
Interface In

SLAM Planning

Path Following
Obstacle Avoidance

Wheel
Interface Out

20

200

Interface SLAM PF-OA

DT=1/200
Time

planning, UI
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Example – mobile robot navigation

1 RT-high priority, periodic for
robot interface

2 Async RT- high priority for SLAM
and PF-OA

3 RT-medium priority, periodic for
LIDAR

4 (RT-) low priority for the rest.

UI
LIDAR
Sensor

Wheel
Interface In

SLAM Planning

Path Following
Obstacle Avoidance

Wheel
Interface Out

20

200

Interface SLAM PF-OA

DT=1/200
Time

planning, UI
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Example – lazy scheduling

Which would be the worst case scenario
timing?

I PF-OA, SLAM, interface – 200 ms
I PF-OA, SLAM, interface – 200 ms
I PF-OA, SLAM, interface – 200 ms

Wheel
Interface In

SLAM

Path Following
Obstacle Avoidance

Wheel
Interface Out

200 200

200
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Discretization of signals

Sensors produces two type of signals
I continuous (e.g. voltage of train gauges)
I discrete (e.g. encoder pulse)

The latter case needs a Discretization/Quantization process :
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Communication of signals

Good transmission
More or less fixed lantency, that is a fraction of the discretization time.

x̂[t] = x[t+ δt], t ∈ ∆T · i, i ∈ N , δt << ∆T

Bad transmission

I High Latency
I Buffering - time warping of the data
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System discretization

When discretizing a system for e.g. design of controllers, we assume
I to know the rate it runs
I that data arrives at the same rate (otherwise account for delay)

To discretize a linear dynamical system a well know approach is to use the the
Tustin discretization method

C(s) = b0s
n−1 + · · ·+ bn−1

sn + a0sn−1 + · · ·+ an−1
⇒ s = 2

T

z − 1
z + 1 ⇒ Cd(Z)
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Time is crucial !
Example: the maximum stiffness K achievable by an haptic interface with
damping b interacting with a virtual wall is a function of ∆T [1]:

b ≤ K ∆T
2

If ∆T varies, the system becomes unstable.
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Take-home messages

I Timing is very important whenever you have control loops
I timing issue can come from non-RT OS, not enough resources, bad

programming, communication issues.
I Even if you do not make an explicit derivation of your control but tune

”rule of thumb”, if rates changes, the system can become unstable.
I better to consider these problems before than try to debug ”strange

behaviours” after.
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Questions ?
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