
Best Practices in integrating complex robotic systems

Introduction to Orocos

Gianni Borghesan
KU Leuven
Febraury 2020

Outline

1 Orocos Toolchain Overview

2 Deployment

3 OCL and other libraries

4 Basic Ros integration

1 Introduction to Orocos

Orocos Toolchain Definition:

The Toolchain allows setup, distribution and the building of real-time
software components. It is sometimes referred to as ’middleware’
because it sits between the application and the Operating System. It
takes care of the real-time communication and execution of software
components.

From the Component Builders Manual, [7]. Most of the figures are from the same source.

2 Introduction to Orocos

WHY! I
As a middle-ware

I When to you do not what to code ad-hoc solutions for communication
composition, etc.

I When you do not what to reinvent-the-wheel about deployment,
communication, scheduling. . .

I When you want to take advantage of some out-of-the-shelf component
e.g. Ethercat Master.

I At some degree, it promotes re-usability of your own components.

3 Introduction to Orocos

WHY! II
As a RT middle-ware with ROS 1 integration

I It has realtime support — you can safely run control loops on it.
I Can take advantage of many ROS tools — expecially HMI and data

visualization.

4 Introduction to Orocos

WHEN!
When

I When you need to design a complex system — especially you have to
integrate several steps or behaviours.

When not

I When you need certification (too complex, too many dependencies) and
developing a rigid application.

5 Introduction to Orocos

The Orocos structure

6 Introduction to Orocos

Developer Layers

The goal of the framework is to divide the development between

Application Developers
Take care of building an application by deployment, configuration, and
coordination.

Components Developers
Creates components that are general purpose, e.g. hardware interface.
Documentation and testing.

In practice, it is difficult to make components that are reusable.

7 Introduction to Orocos

Developer Layers

The goal of the framework is to divide the development between

Application Developers
Take care of building an application by deployment, configuration, and
coordination.

Components Developers
Creates components that are general purpose, e.g. hardware interface.
Documentation and testing.

In practice, it is difficult to make components that are reusable.

7 Introduction to Orocos

Orocos Toolchain Tools I
The toolchain provides:

Tools to support the build system (IN ROS)

I Catkin (ROS).
I create-pkg: generate skeleton of an Orocos package
I code generation — generate new messages for transport

8 Introduction to Orocos

Orocos Toolchain Tools II
Real-Time Toolkit (RTT)

I Abstraction to access OS timer/scheduler, defining a number of activities:

• Periodic activities.
• Aperiodic activities, port-triggered.
• Aperiodic activities, file descriptor-triggered.
• Master/slave activities.

I Data and Data Flow abstraction

9 Introduction to Orocos

Orocos Toolchain Tools III
The Orocos Component Library (OCL)

I Deployer
I Task Browser (native and lua)
I Lua Component — also for deploying
I Logging
I Data Reporting (both cvs and binary)
I the base-class of all the components, the Task Context

10 Introduction to Orocos

The Orocos Component

The context exposes:

I Ports
I Operations
I Properties
I Services/Plugins

11 Introduction to Orocos

Component States — The Life-Cycle State-Machine

The life cycle state machine:

I Each transition calls a function.
I Self transitions are possible.
I More states (error, clean-up, . . .)

12 Introduction to Orocos

Component Execution

13 Introduction to Orocos

Activities
An activity registers a trigger in the scheduler, and creates a thread that
execute the execution engine.

I Periodic activities
I Aperiodic activities — trigger on events, such as writing to a port or

file descriptor.
I Master/Slave activities

Activities are parametrized in function of:
I Real Time or not real time,
I Priority, and
I Frequency (zero for aperiodic).

14 Introduction to Orocos

Parenthesis — Real Time

What a real time system is?
A (hard-)real time system, is a system that must provide a response to an
external stimulus in a fixed amount of time.

I Over-run can be dangerous - robot becomes unstable.
I RT is about predictability, not speed!
I RT is associated with Scheduling.

15 Introduction to Orocos

How to get an RTOS-Orocos for desktop? I

Xenomai

I Is based on a micro-kernel (a RT kernel that runs also a linux kernel)—
dificcult to maintain

I nice how-to xenomai-Orocos
https://rtt-lwr.readthedocs.io/en/latest/index.html

I you need to recompile Orocos from sources, with correct flags . . .

16 Introduction to Orocos

https://rtt-lwr.readthedocs.io/en/latest/index.html

How to get an RTOS-Orocos for desktop? II
PREEMPT RT Patch

I is a patch for a normal kernel to make it (fully) pre-emptive
I No need to recompile, https://wiki.linuxfoundation.org/realtime/

documentation/howto/applications/preemptrt setup
I you do not need to recompile Orocos from sources. . .
I PREEMPT RT Patch is becoming mainline [1].

17 Introduction to Orocos

https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/preemptrt_setup
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/preemptrt_setup

Component Interconnection — Ports

I Ports allow for data transfer.
I Data are stored in a buffer, that can hold more than the last value.
I There is a buffer for each connection.
I Read returns the last value, and if the buffer holds more than one data,

consume it.
I Read returns also a status: NoData, OldData and NewData.
I input ports can be added as an eventPort — every time a new data is

available for such port, the updateHook (or a callback) will be executed
by the execution engine.

18 Introduction to Orocos

Component Interconnection — Connection Policy

Ports are connected by means of buffers or data. By default connections are
locked (mutex).

I DATA (default) only last data is maintained.
I BUFFER drops newer sample when full.
I CIRCULAR BUFFER drops older samples when full.

19 Introduction to Orocos

Component Interconnection — Ports

20 Introduction to Orocos

Component Interconnection — Operations

I Operations allows to run functions.
I Operation can be executed by the owner or the caller: it influences at

which priority the call is executed.
I Components need to be peers.

21 Introduction to Orocos

Component Interconnection — Operations
Execution
Type

Requires locks in your compo-
nent?

Executed
at priority
of

Examples

Client
Thread

Yes. For any data shared be-
tween the ClientThread-tagged
operation and updateHook() or
other operations.

Caller
thread

Stateless algorithms that get all
data through parameters, Opera-
tions of real-time components that
are not real-time

Own
Thread

No. Every OwnThread-tagged
operation and updateHook() is
executed in the thread of the
component.

Component
thread.

Operations that do a lot of
setup work in the component,
Operations which are called from
several places at the same time.
e.g.:moveToPosition(pos,
time), setParameter("name",
value),..

22 Introduction to Orocos

Calling Vs Sending Operations

Operation can be called by other peer components
I directly: it blocks until the result is done,
I or send/collect: the operation is started in the given activity, and result

must be collected via polling.

23 Introduction to Orocos

Properties

I Properties are data exposed in the interface.
I They can be changed by other components.
I They can be loaded and stored via the Marshalling service.

24 Introduction to Orocos

Services (and Plugins)

They are useful to group a number of operation under a name.
Services are

I provided: when added to the interface
I required: before called by other components

Services can also have properties.
They are very useful to write plugins [5]!
Plugins are factory-like libraries that extends the interface of a component
(e.g. marshalling, soem hardware), normally with services.

25 Introduction to Orocos

Component Examples – Header

include <r t t /RTT. hpp>
class MyComp : public RTT : : TaskContext{
public :

MyComp(s t d : : s t r i n g const& name) ;
// bool configureHook ();// no configure phase needed here.
bool s t a r t H o o k () ;
void updateHook () ;
void stopHook () ;
// operation
void s e t C o u n t e r (int)

private :
// ports
RTT : : OutputPort<int> o u t p o r t c o u n t e r ;
// properties
int i n i t v a l u e ;
// other variables
int c u r r e n t i n d e x ;

} ;

26 Introduction to Orocos

Component Examples – CPP

include "my_comp - component .hpp"
using namespace RTT;
MyComp : : MyComp(s t d : : s t r i n g const& name) : TaskContext (name) ,
i n i t v a l u e (0){

addPort (" outport_counter " , o u t p o r t c o u n t e r) ;
a d d P r o p e r t y (" init_value " , i n i t v a l u e) ;
a dd O pe r a t i on (" setCounter " ,&MyComp : : s e t C o u n t e r , this , OwnThread)

}
bool MyComp : : s t a r t H o o k (){

if (i n i t v a l u e <0)
return false ;

c u r r e n t i n d e x=i n i t v a l u e ;
return true ; // return false will stop the transition

}
void MyComp : : updateHook (){

c u r r e n t i n d e x++
o u t p o r t c o u n t e r . w r i t e (c u r r e n t i n d e x) ;

}
void MyComp : : stopHook (){

c u r r e n t i n d e x=i n i t v a l u e ;
}
void MyComp : : s e t C o u n t e r (int n e w v a l u e){

c u r r e n t i n d e x=n e w v a l u e ;
}

27 Introduction to Orocos

Event+Callback Example

// hpp
class b a s e i n t e r f a c e : public RTT : : TaskContext{

. . .
s t d : : v e c t o r<RTT : : I n p u t P o r t< s t d m s g s : : I n t 3 2> > X Y Z M o t o r e n c o d e r i n p o r t ;

}
// cpp
b a s e i n t e r f a c e : : b a s e i n t e r f a c e (s t d : : s t r i n g const& name) : TaskContext (name , P r e O p e r a t i o n a l)
, X Y Z M o t o r e n c o d e r i n p o r t (3)
. . .
{ . . .
for (int i =0; i <3; i ++){

addEventPort (" XYZ_Motor_encoder_ "+ s t d : : t o s t r i n g (i +1) , X Y Z M o t o r e n c o d e r i n p o r t [i] ,
b o o s t : : b i n d (& b a s e i n t e r f a c e : : e n c o d e r c a l l b a c k , this , 1 , i))
. doc (" Encoder Value of Motor "+ s t d : : t o s t r i n g (i +1)) ;

void b a s e i n t e r f a c e : : e n c o d e r c a l l b a c k (RTT : : base : : P o r t I n t e r f a c e ∗ p o r t I n t e r f a c e , int i){
newDataArr ived [i]=true ;
. . .

}

void b a s e i n t e r f a c e : : updateHook (){
if (! (newDataArr ived [0]&& newDataArr ived [1]&& newDataArr ived [2]))

return ;
. . .

}

28 Introduction to Orocos

Event+Callback Example

// hpp
class b a s e i n t e r f a c e : public RTT : : TaskContext{

. . .
s t d : : v e c t o r<RTT : : I n p u t P o r t< s t d m s g s : : I n t 3 2> > X Y Z M o t o r e n c o d e r i n p o r t ;

}
// cpp
b a s e i n t e r f a c e : : b a s e i n t e r f a c e (s t d : : s t r i n g const& name) : TaskContext (name , P r e O p e r a t i o n a l)
, X Y Z M o t o r e n c o d e r i n p o r t (3)
. . .
{ . . .
for (int i =0; i <3; i ++){

addEventPort (" XYZ_Motor_encoder_ "+ s t d : : t o s t r i n g (i +1) , X Y Z M o t o r e n c o d e r i n p o r t [i] ,
b o o s t : : b i n d (& b a s e i n t e r f a c e : : e n c o d e r c a l l b a c k , this , 1 , i))
. doc (" Encoder Value of Motor "+ s t d : : t o s t r i n g (i +1)) ;

void b a s e i n t e r f a c e : : e n c o d e r c a l l b a c k (RTT : : base : : P o r t I n t e r f a c e ∗ p o r t I n t e r f a c e , int i){
newDataArr ived [i]=true ;
. . .

}

void b a s e i n t e r f a c e : : updateHook (){
if (! (newDataArr ived [0]&& newDataArr ived [1]&& newDataArr ived [2]))

return ;
. . .

}

28 Introduction to Orocos

Ports have not copy constructors!
Is possible to initialise within the class inizialiser list
the vector, but no resize.
If you want to dynamically resize → pointers.

Calling an operation Example

Blocking call
TaskContext ∗ a t a s k p t r = g e t P e e r (" ATask ") ;
O p e r a t i o n C a l l e r<void (void)> m y r e s e t m e t h
= a t a s k p t r −>g e t O p e r a t i o n (" reset ") ; // void reset (bool)
// Call ’reset ’ of a_task , blocking
bool ok=r e s e t m e t h () ;

Send and Collect
SendHandle<void (void)> h a n d l e = r e s e t m e t h . send () ;
bool ok ;
if (h a n d l e . c o l l e c t I f D o n e () == SendSuccess){

h a n d l e = r e s e t m e t h . send (ok) ;
S en dSt at us s s = h a n d l e . c o l l e c t () ;
if (s s != SendSuccess) {

cout << " Execution of reset failed ." << e n d l ;
}

cout << " Return value "<< ok << e n d l ;
}

29 Introduction to Orocos

Logging

Logger : : I n i n (this−>getName ()) ;
RTT : : l o g (E r r o r)<<" failed ,"<<RTT : : e n d l o g () ;

Timestamped Logging is saved automatically in orocos.log file. depending
of minimum log level, is displayed in console.
The first line notifies the logger which component orignates the log.
there are six log levels, the most used are:

I Error I Warning I Info I Debug

Logging breaks real-time

30 Introduction to Orocos

Last remarks on re-usability

I Components are a abstractions of threads - not functions
I Re-usability can be achieved at high granularity
I If you need to execute components in a chain, you can impose explicit

scheduling using
• Event Ports
• Master slave-activities, or the fbsched component

I For big components, try to make libraries for the computational part, and
glue-code to Orocos.

31 Introduction to Orocos

Last remarks on real-time code
you must write the code in such a way:

I Non-RT code is executed in the boot-strap phase (configureHook)
• Memory allocation (including outputports, see setDataSample)
• Variable-time algorithms

I RT is in the updateHook.
• Do not log, nor cout.
• Deterministic time algorithm

32 Introduction to Orocos

Outline

1 Orocos Toolchain Overview

2 Deployment

3 OCL and other libraries

4 Basic Ros integration

33 Introduction to Orocos

How to write a program

To build an application, we need to make a number of steps.
This can be done:

I directly writing a c++ main (ORO main)
I using an executable that deploys the Deployer component, and

interpret a deployment script (lua or native).

Compiling components
Components are normal child classes; they are compiled as shared libraries
that can be dynamically linked (ORO main) or dynamically loaded (deployer).

34 Introduction to Orocos

How to write a program

To build an application, we need to make a number of steps.
This can be done:

I directly writing a c++ main (ORO main)
I using an executable that deploys the Deployer component, and

interpret a deployment script (lua or native).

Compiling components
Components are normal child classes; they are compiled as shared libraries
that can be dynamically linked (ORO main) or dynamically loaded (deployer).

34 Introduction to Orocos

Deployer component activities

From the “The Deployment Component” webpage, [6].

35 Introduction to Orocos

Deployment Flow

The Flow for a simple activity is:
I import packages,
I load components,
I configure:

• set properties
• create activities
• connect peers
• call configure()

I start
From the “The Deployment Component” webpage, [6].

36 Introduction to Orocos

Deploying Components — OPS

Orocos has native scripting, the Orocos Program Scripts language. It can be
used for coding a deployer file:

deployer -s myscript.ops
This command:

I opens a task browser (OPS shell),
I runs script, and
I return to an interactive shell.

37 Introduction to Orocos

Deploying Components — OPS

// this is a comment !
i m p o r t (" my_package ")
loadComponent (" producer " , " Producer ")
loadComponent (" consumer " , " Consumer ")

s e t A c t i v i t y (" producer " , 98 , 0 . 0 1 , ORO SCHED RT)
s e t A c t i v i t y (" consumer " , 97 , 0 , ORO SCHED RT)

// connect ports
v a r Co nnPo l i c y cp // non - buffered connection
c o n n e c t (" producer . outport " , " consumer . inport " , cp)
// configure the components
p r o d u c e r : c o n f i g u r e ()
consumer : c o n f i g u r e ()
// start components
consumer : s t a r t ()
p r o d u c e r : s t a r t ()

38 Introduction to Orocos

Deployer Commands

within the task-browser you can set a number of commands (in addition to the
one in the previous slide).
Note: tab completion and backward research is available!

I help: print-out the help of the current component (including the
Deployer)

I ls: list the component interface
I .types, .services: print known types and services
I cd: enter in a (peer) component
I leave and enter: change view of the task browser
I var ’type’ ’name’: creates a variable
I call/send operations: like start, stop, and customs

39 Introduction to Orocos

Deploying Components — Lua

Xml and native scripting are now used less in favour of Lua scripting language
[4].
A script is launched with the command rttlua:

rttlua -i myscript.lua
This command:

I opens a task browser (lua shell),
I loads two components, lua (OCL::LuaComponent) and Deployer, then
I the lua component executes the script (that uses the Deployer, being

peers), and
I leaves the shell open to interactive mode (-i flag); otherwise, the process

will close upon script competition.

40 Introduction to Orocos

Deploying Components — Lua

require " rttlib "
r t t l i b . c o l o r=true
t c=r t t . getTC ()
d e p l = t c : g e t P e e r (" Deployer ")
-- load package
d e p l : i m p o r t (" my_package ")
-- create components
d e p l : loadComponent (" producer " , " Producer ")
d e p l : loadComponent (" consumer " , " Consumer ")
--... and get references to them
p r o d u c e r = d e p l : g e t P e e r (" producer ")
consumer = d e p l : g e t P e e r (" consumer ")
-- configure the components
p r o d u c e r : c o n f i g u r e ()
consumer : c o n f i g u r e ()
-- connect ports
d e p l : c o n n e c t (" producer . outport " , " consumer . inport " , r t t . V a r i a b l e (’ConnPolicy ’))
d e p l : s e t A c t i v i t y (" producer " , 98 , 0 . 0 1 , r t t . g l o b a l s . ORO SCHED RT)
d e p l : s e t A c t i v i t y (" consumer " , 97 , 0 , r t t . g l o b a l s . ORO SCHED RT)
-- start components
consumer : s t a r t ()
p r o d u c e r : s t a r t ()

41 Introduction to Orocos

Outline

1 Orocos Toolchain Overview

2 Deployment

3 OCL and other libraries

4 Basic Ros integration

42 Introduction to Orocos

The Orocos component library

Orocos comes with a number of pre-built blocks

I ConsoleReporting
I FileReporting
I HMIConsoleOutput
I HelloWorld
I LuaComponent
I LuaTLSFComponent
I NetcdfReporting

I TcpReporting
I TimerComponent
I logging::Appender
I logging::GenerationalFileAppender
I logging::LoggingService
I logging::OstreamAppender
I logging::RollingFileAppender

43 Introduction to Orocos

The Reporter

OCL provides two types of reporter to write data to a file:
I FileReporting
I NetcdfReporting

They have the same interface:
I reportComponent(string const& Component)
I reportData(string const& Component, string const& Data)
I reportPort(string const& Component, string const& Port)

they can be used for periodic report (by setting a period) or in snapshot mode.

44 Introduction to Orocos

The Lua component

I It allows to write simple components directly in Lua.
I Operations in lua are not supported — but is possible to inherit the lua

component and add in c++,
I Used a lot for loading the state machine based on lua (rFSM, [3])
I Please refer to the Lua CookBook [2].

Lua is good for configuration and coordination, not for computation
(easily wraps C and C++)!

45 Introduction to Orocos

The Lua component

I It allows to write simple components directly in Lua.
I Operations in lua are not supported — but is possible to inherit the lua

component and add in c++,
I Used a lot for loading the state machine based on lua (rFSM, [3])
I Please refer to the Lua CookBook [2].

Lua is good for configuration and coordination, not for computation
(easily wraps C and C++)!

45 Introduction to Orocos

The Lua component

To load a lua component (from lua deployment):
d e p l : loadComponent (" event_echo " , "OCL :: LuaComponent ")
e v e n t e c h o = d e p l : g e t P e e r (" event_echo ")
e v e n t e c h o : e x e c f i l e (c u s t o m f o l d e r . . " event_echo .lua")

The same can be done with OPS

46 Introduction to Orocos

The Lua component

The event echo component (event echo.lua)
require (" rttlib ")
t c=r t t . getTC ()
local i n p o r t
local o u t p o r t

function c o n f i g u r e H o o k ()
i n p o r t = r t t . I n p u t P o r t (" std_msgs . String " , " event_in ") -- global variable !
o u t p o r t = r t t . OutputPort (" string " , " event_out ") -- global variable !
t c : addEventPort (i n p o r t)
t c : addPort (o u t p o r t)
return true

end

function updateHook ()
local f s , e v i n = i n p o r t : r e a d ()
o u t p o r t : w r i t e (e v i n . data)

end

function c leanupHook ()
r t t l i b . t c c l e a n u p ()

end

47 Introduction to Orocos

Components for various hardware

I Kuka iwa LWR (ROB)
I Kuka lwr 3 (ROB)
I Universal Robot https://github.com/gborghesan/URDriver
I SOEM master

https://github.com/orocos/rtt soem/tree/master/soem master
(Beckoff, Maxpos, Robotique hand, . . .)

I . . .

48 Introduction to Orocos

https://github.com/gborghesan/URDriver
https://github.com/orocos/rtt_soem/tree/master/soem_master

Outline

1 Orocos Toolchain Overview

2 Deployment

3 OCL and other libraries

4 Basic Ros integration

49 Introduction to Orocos

Packages (github.com/orocos/rtt ros integration)

I rtt ros ROS package import plugin as well as wrapper scripts and launchfiles for using Orocos with ROS.
I rtt rosclock Realtime-Safe NTP clock measurement and ROS Time structure construction as well as a

simulation-clock-based periodic RTT activity.
I rtt rosnode Plugin for ROS node instantiation inside an Orocos program.
I rtt rosparam Plugin for synchronizing ROS parameters with Orocos component properties.
I rtt roscomm ROS message typekit generation and Orocos plugin for publishing and subscribing to ROS topics as well

as calling and responding to ROS services.
I rtt rosdeployment An RTT service which advertises common DeploymentComponent operations as ROS services.
I rtt rospack Plugin for locating ROS resources.
I rtt tf RTT-Plugin which uses tf to allow RTT components to lookup and publish transforms.
I rtt actionlib RTT-Enabled actionlib action server for providing actions from ROS-integrated RTT components.
I rtt dynamic reconfigure A service plugin that implements a dynamic reconfigure server to update properties

dynamically during runtime.
I rtt ros msgs ROS .msg and .srv types for use with these plugins.
I rtt ros integration Catkin metapackage for this repository.

50 Introduction to Orocos

github.com/orocos/rtt_ros_integration

Use of typekits from ROS messages

All the standard types of ros are already ready. To use them import the rtt *
version of the package:
D e p l o y e r [S]> i m p o r t (" rtt_std_msgs ")
= true
D e p l o y e r [S]> . t y p e s
A v a i l a b l e data t y p e s : s t d m s g s . Bool s t d m s g s . Bool [] s t d m s g s . Byte s t d m s g s . B y t e M u l t i A r r a y

s t d m s g s . B y t e M u l t i A r r a y [] s t d m s g s . Byte []

In case of custom messages you can generate custom message with command
create rtt msgs of the rtt roscomm package:
r o s r u n r t t roscomm c r e a t e r t t m s g s my custom msgs

This generate also the headers, and they can used inside your components
(also lua - see lua component example).

51 Introduction to Orocos

Use of typekits from ROS messages

All the standard types of ros are already ready. To use them import the rtt *
version of the package:

D e p l o y e r [S]> i m p o r t (" rtt_std_msgs ")
= true
D e p l o y e r [S]> . t y p e s
A v a i l a b l e data t y p e s : s t d m s g s . Bool s t d m s g s . Bool [] s t d m s g s . Byte s t d m s g s . B y t e M u l t i A r r a y
s t d m s g s . B y t e M u l t i A r r a y [] s t d m s g s . Byte []

In case of custom messages you can generate custom message with command
create rtt msgs of the rtt roscomm package:

r o s r u n r t t roscomm c r e a t e r t t m s g s my custom msgs

This generate also the headers, and they can used inside your components
(also lua - see lua component example).

52 Introduction to Orocos

Set streams to/from ROS topics

i m p o r t (" rtt_std_msgs ")
i m p o r t (" rtt_rosnode ") // makes orocos a ros node. will complain if roscore is not running
i m p o r t (" rtt_roscomm ") // contains the topic services
s t ream (" hello . my_ros_port " , r o s . t o p i c (" my_topic "))

Steps:
I load the typekit,
I load the rosnode package, it registers the orocos process as ros node (will

fail if no roscore is running),
I connect the port.

53 Introduction to Orocos

import using ROS path, and ROS-Find equivalent

D e p l o y e r [S]> i m p o r t (" rtt_ros ")
= true
D e p l o y e r [S]> r o s . i m p o r t (" hello1 ")
= true

rtt ros allows to import taking advantage of ROS environmental path
variables

D e p l o y e r [S]> i m p o r t (" rtt_rospack ")
= true
D e p l o y e r [S]> r o s . f i n d (" hello1 ")
= /home/ gborghesan / w s k i n e t i c / w s m y p r o j e c t s / s r c / h e l l o 1

rtt rospack allows to get directories - very useful for loading config files.

54 Introduction to Orocos

Other integration features

Launch files (https://github.com/jhu-lcsr/rtt ros examples)

<l a u n c h>
<a r g name="LUA" default="true"/>

<i n c l u d e i f ="$(arg LUA)" f i l e ="$(find rtt_ros)/ launch / ldeployer . launch ">
<a r g name=" DEPLOYER_ARGS " v a l u e="-g -s $(find rtt_ros_integration_example)/ example .lua"/>
<a r g name=" LOG_LEVEL " v a l u e=" debug "/>
<a r g name=" DEBUG " v a l u e=" false "/>
</ i n c l u d e>

<i n c l u d e u n l e s s="$(arg LUA)" f i l e ="$(find rtt_ros)/ launch / deployer . launch ">
<a r g name=" DEPLOYER_ARGS " v a l u e="-s $(find rtt_ros_integration_example)/ example .ops"/>
<a r g name=" LOG_LEVEL " v a l u e=" debug "/>
<a r g name=" DEBUG " v a l u e=" false "/>
</ i n c l u d e>

<node name=" update_monitor " pkg=" rtt_ros_integration_example " t y p e=" update_monitor .py" output=" screen "/>
</ l a u n c h>

55 Introduction to Orocos

https://github.com/jhu-lcsr/rtt_ros_examples

Other integration features

Services and ActionLib

I Examples here: https://github.com/jhu-lcsr/rtt ros examples
I These are very intrusive to use, especially ActionLib,
I they can be substituted with other mechanisms.
I if you use it, is better to have a component that acts as RPC server.

56 Introduction to Orocos

https://github.com/jhu-lcsr/rtt_ros_examples

Bibliography I

[1] Lukas Bulwahn. Real-Time Linux Continues Its Way to Mainline
Development and Beyond.
https://www.linuxfoundation.org/blog/2018/09/real-time-linux-
continues-its-way-to-mainline-development-and-beyond/. 2018.

[2] Markus Klotzbücher. LuaCookbook.
https://www.orocos.org/wiki/orocos/toolchain/luacookbook. Lastly
visited: Feb 2020.

[3] Markus Klotzbücher. rFSM Statecharts.
https://github.com/kmarkus/rFSM. Lastly visited: Feb 2020.

1 Introduction to Orocos

https://www.linuxfoundation.org/blog/2018/09/real-time-linux-continues-its-way-to-mainline-development-and-beyond/
https://www.linuxfoundation.org/blog/2018/09/real-time-linux-continues-its-way-to-mainline-development-and-beyond/
https://www.orocos.org/wiki/orocos/toolchain/luacookbook
https://github.com/kmarkus/rFSM

Bibliography II
[4] Markus Klotzbücher, Peter Soetens, and Herman Bruyninckx. “OROCOS

RTT-Lua: an Execution Environment for building Real-timeb Robotic
Domain Specific Languages”. In: Proc. of the Intl. Conf. on
SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS
ROBOTS. 2010.

[5] Peter Soetens. Extending the Real-Time Toolkit with Plugins.
https://www.orocos.org/stable/documentation/rtt/v2.x/doc-
xml/orocos-rtt-plugins.html. Lastly visited: Feb 2020. 2010.

[6] Peter Soetens. The Deployment Component.
https://orocos.org/ocl/toolchain-2.9/xml/orocos-deployment.html.
Lastly visited: Oct 2019. 2012.

2 Introduction to Orocos

https://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/orocos-rtt-plugins.html
https://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/orocos-rtt-plugins.html
https://orocos.org/ocl/toolchain-2.9/xml/orocos-deployment.html

Bibliography III
[7] Peter Soetens. The Orocos Component Builder’s Manual. https:

//orocos.org/rtt/toolchain-2.9/xml/orocos-components-manual.pdf.
Lastly visited: Oct 2019. 2014.

3 Introduction to Orocos

https://orocos.org/rtt/toolchain-2.9/xml/orocos-components-manual.pdf
https://orocos.org/rtt/toolchain-2.9/xml/orocos-components-manual.pdf

	Orocos Toolchain Overview
	Deployment
	OCL and other libraries
	Basic Ros integration
	Appendix

