
Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020 1

Best practices in programming
the things you don't want to hear, but that someone had to tell you

/> Albert Hernansanz, UPC

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020 2

Nothing new

Index

1. There will be nothing new

2. Will be a so boring talk about a so boring topic

3. But, it is a must

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020 3

Nothing new

Index

1. Software Development Phases
2. Software Quality
3. Recommendations for Codding Standards
4. Common programming mistakes
5. Version control systems
6. Hands On: Example of code commenting and documentation

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Software Development Phases

Software Development Phases

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Software Development Phases

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Software Development Phases

Requireme
nts

Analysis

DesignCoding

Testing

Project
Manage

ment

How it should be done

Create a software structure
(architecture) around which
code will be build

Fill in the software
structure with code

Check that the code does
what it is supposed to

(functionality, performance,
reliability, …)

What needs to be done

Devise a plan,
manage resources,
costs, time, …

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Software Quality

Software Quality

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Software Quality

Cost of Software Quality (CoSQ) model identifies the component costs of quality
and how those add up to form a notional total.

The cost of poor quality software in the US in 2018 is approximately $2.84 trillion

The Cost of Poor Quality Software in the US: A 2018 Report.
Herb Krasner
Member, Advisory Board
Consortium for IT Software Quality (CISQ)
www.it-cisq.org
Hkrasner@utexas.edu
Date: September 26, 2018

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Software Quality
The Iceberg Model
Many of the costs of poor IT software quality are hidden and difficult to identify
with formal measurement systems.
The iceberg model illustrates this concept:
• Only a minority of the costs of poor software quality are obvious
• There is a huge potential for reducing costs under the waterline.

The Cost of Poor Quality Software in the US: A 2018
Report.
Herb Krasner
Member, Advisory Board
Consortium for IT Software Quality (CISQ)
www.it-cisq.org
Hkrasner@utexas.edu
Date: September 26, 2018

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Software Quality
Minimize human factor

Enforce Programming Standards to Eliminate Human Error

Implementing programming standards by using automated tools
goes a long way to eliminating the human errors that cause fatal

catastrophes.

Jay Thomas | Nov 14, 2014

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Software Quality
Minimize human factor

Human factor is a focus of errors and mistakes

• Control the software engineering tools used during all development phases

• Define formal specifications

• Formal design techniques

• Formal techniques to prove correctness

• Use programming standards

• Develop systematic testing

• Etc.

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Software Quality
The bug

Software bug:

• A problem causing a program to crash or produce invalid output.

• The problem is caused by insufficient or erroneous logic.

Bug can be: an error, mistake, defect or fault, which may cause failure or deviation
from expected results.

• Most bugs are due to human errors in source code or its design.
• Some bugs might not have serious effects on the functionality of the program and

may remain undetected for a long time.
• A program might crash when serious bugs are left unidentified.

Source: Techopedia

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Software Quality
The bug

Some of the worst bugs in history include:

• In the 1980s, bugs in the code controlling the machine called Therac-25,
used for radiation therapy, lead to patient deaths.

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Software Quality
The bug

Some of the worst bugs in history include:

• In 1996, the $1.0 billion rocket called Ariane 5 was destroyed a few seconds after
launch due to a bug in the on-board guidance computer program.

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Software Quality
The bug

Some of the worst bugs in history include:

• Software bug led to death in Uber’s self-driving crash
• Sensors detected Elaine Herzberg, but software reportedly decided to ignore

her (software classified her as a "false positive" and decided it didn't need to
stop for her)

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Software Quality
Defect-Related Definitions

The term defect generally refers to some problem with the software, either with its
external behavior or with its internal characteristics. The IEEE Standard 610.12 (IEEE
1990) defines the following terms related to defects:

• Error: A human action that produces an incorrect result

• Fault: An incorrect step, process, or data definition in a computer program

• Failure: The inability of a system or component to perform its required functions
within specified performance requirements

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Software Quality
Defect-Related Definitions

• Error: Mistake made in translation or interpretation

• Fault: Manifestation of the error in implementation

• Failure: Observable deviation in behavior of the system

Example: (Requirement) print speed, defined as distance divided by time

s = d/t; print s;

• Error: Account for t=0 (divided by zero error)
• Fault: Not catching t=0
• Failure: exception is thrown

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Simplicity

• Unnecessary complexity generates errors P(error) = f(complexity)

• Complex functions, modules and programs:
• Difficult their understanding
• Difficult to follow the execution thread
• Difficult maintenance and contain more bugs

• Complex data is usually
• Hard to operate with
• Difficult to understand and debug
• Inefficient (computation and memory)
• Dynamic memory allocation is dangerous and require strict access control

Software Quality

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Common mistakes programming
Simplicity

Complexity is synonym of problems. Be simple when programming

“Ironically, writing simple code is neither easy nor simple and, at times, it may actually
be quite complex to simplify a logic or a piece of code”

mitendra mahto @mitendra_mahto

https://hackernoon.com/@mitendra_mahto

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Simplicity in Data Structures

Complex data is not a good idea, but, if required:

• Each class should mean something by itself

• Structure the data in a logical way (make sense)

• Group in classes protecting data integrity and generating access methods
int GetPointCoord(int idPoint, pointCoord pointCoord);
int SetPointCoord(int idPoint, pointCoord point);

• Test parameters
if ((idPoint < 0) || (idPoint > PolygonCoord.size()))
{

return ERR_PARAMETER_OUT_OF_RANGE;
}

Software Quality

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Simplicity in Data Structures

Dynamic data

• Better static data structures than dynamic data structures
• Use methods to prevent data access error (e.g. vector of n elements, access to n+1)
• Static data structures are usually:

• Safer (no undesired memory access)
• Faster (consecutive memory allocation)

Software Quality

Example: dynamic vector
Use standard data structures and methods

Do it by my self: Core Dump/Segmentation/memory access
std::vector : Release memory addressing to a well proven method
std::vector + test of range (v[i] just when i < length(v))

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Unit Tests
• Ensure each “module” works properly before integrating modules together.
• Easier to test modules of a system rather than debugging the entire
• executable.
• Good for catching “rare” bugs that only occur on unusual conditions.

• Black Box tests:
• Reviewing only the functionalities of an application, i.e. if it does what it is

supposed to, no matter how it does it.

• White Box tests:
• reviewing the functioning of an application and its internal structure, its

processes, rather than its functionalities.

• Both types of testing are needed

Software Quality. Testing

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Unit Tests: Coverage metrics

• Statement Coverage: Execution of every statement at least once.

• Branch/Decision Coverage: Decision points are globally tested TRUE/FALSE
IF (A OR B) THEN
Two tests: (A=TRUE, B=TRUE), (A=FALSE, B=FALSE).

• Condition Coverage: Decision points based on multiple decisions are evaluated for
all possibilities of its components.

IF (A OR B) THEN
Four tests: (A=T, B=T), (A=F, B=F), (A=T, B=F), (A=F, B=T).

• Path Coverage: Each possible path from beginning to the end is evaluated.

• Function Coverage: Each function is executed during test execution.

Software Quality. Testing

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Integration tests

Software Quality. Testing

The goal of integration tests is testing interfaces between modules and
communication mechanisms (design).

• Two approaches:
• Top-down: Test of interfaces of high level modules is done first.
• Bottom-up: Test of interfaces of lower layers is done first.

• Use of stubs / drivers for the modules not being integrated.

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

NOTE: The use of proven HW and SW

Critical applications require from highly tested HW and SW

• The continuous use detects HW and SW bugs
• Follow all threads in complex SW and HW is impossible.

Software Quality

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Redundancy

Critical applications require from redundancy to increase safety

• If a system fails, there is another identical system running. The process do not stops

• Two complete control systems acting on the same plant (e.g. airplane). If the output
of both systems is not identic -> release control to human (something is wrong on
automatic control)

Software Quality

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Recommendations for Codding Standards

Recommendations for Codding
Standards

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Metrics systems:

Define a common metric system

• In robotics: mm or m, deg or rad, …
• Programming: double or float, …

Software Quality. Common Mistakes

The Metric System and NASA's Mars Climate Orbiter
• cost of $125 million and 338-kilogram robotic space probe
• launched by NASA on December 11, 1998
• Study the Martian climate, atmosphere, and surface changes.
• The navigation team at the Jet Propulsion Laboratory (JPL) used the metric system of

millimeters and meters
• Lockheed Martin Astronautics (designed and built the spacecraft), provided crucial

acceleration data in the English system of inches, feet, and pounds.
• NASA review board: the problem was in the sw controlling the orbiter’s thrusters. The sw

calculated the force that the thrusters needed to exert in pounds of force. A second piece of
code that read this data assumed it was in the metric unit—“newtons per square meter”.

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Metrics systems:

Software Quality

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Recommendations for Codding Standards
Recommendations for Codding Standards

By NOAA National Weather Service NWS/OHD General Software Coding Standards and Guidelines

3.1 Indentation
Proper and consistent indentation is important in producing easy to read and maintainable
programs.

Indentation should be used to:
• Emphasize the body of a control statement such as a loop or a select statement
• Emphasize the body of a conditional statement
• Emphasize a new scope block

/* Indentation used in a loop construct. Four spaces are used for indentation. */
for (int i = 0 ; i < number_of_employees ; ++i)
{

total_wages += employee [i] . wages ;
}

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

3.2 Inline comments
Inline comments explaining the functioning of the subroutine or key aspects of the
algorithm shall be frequently used.

• Inline comments promote program readability.
• Allow a programmer not familiar with the code to more quickly understand it.
• Helps the programmer who wrote the code to remember details forgotten over time.
• Reduces the amount of time required to perform software maintenance tasks.

Think what you will need if you have to review the code after 4 years

Recommendations for Codding Standards

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

3.3 Structured Programming

• Structured (modular) programming techniques are a MUST.
• Group code in functions or modules that do something by themselves.
• Structured programs help programming, debugging and maintenance tasks.

Recommendations for Codding Standards

Think what you will need if you have to review the code after 4 years

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

3.4 Classes, Subroutines, Functions and Methods

• Keep reasonably sized.
• 1 module does just 1 “thing”
• Too long: programmer is trying to do too many actions at one time

3.5 Source Files
The name of the source file or script shall represent its function. All of the routines
in a file shall have a common purpose.

3.6 Variable Names
Variable shall have mnemonic or meaningful names that convey to a casual
observer, the intent of its use. Variables shall be initialized prior to its first use.

Recommendations for Codding Standards

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

3.7 Use of Braces
• More readable
• Less programming errors
• Better control

Even for a single statement in the control block!:

if (j == 0)
printf (“j is zero.\n”);

if (j == 0)
{

printf (“j is zero.\n”);
}

Recommendations for Codding Standards

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

3.8 Compiler Warnings

• Compilers generate: Warnings and Errors

• Compiler and linker warnings shall be treated as errors and fixed.

raise your hand who does

(I have to confess, I do not…)

Recommendations for Codding Standards

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Common mistakes programming

Common programming mistakes

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Common mistakes programming
Some basic rules for coding

We always forget some basic rules when coding.

• Internalize good programming practices

• Test each piece of code (results and interaction with the rest of the software)

• Be systematic during coding, documenting and testing phases

• Commenting and documenting is a must

• Use of standardized tools

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Common mistakes programming
Programming style

Set of rules or guidelines used when writing the source code for a computer program.

Good programming style helps to:
• Reading and understanding source code
• Reduce the risk of introducing faults

Some basic rules for a correct style

• Comment each function
• Don’t write deeply nested code
• Don’t write very large modules or

functions
• Don’t write very long lines
• Don’t optimize code

• Eliminate side effects
• Write deterministic code
• Use device drivers to isolate hardware

interfaces
• Do and undo things in the same function
• Etc…

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Common mistakes programming
Naming

Naming is not only a marketing concept

• Name of functions, classes, data structures and variables must be self descriptive

This means nothing, this is so confusing and focus of errors

int function f (int b, int c)
{

int a = b + c;
return a;

}

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Common mistakes programming
NaN, Divided by Zero, …

• Name of functions, classes, data structures and variables must be self descriptive

double function divide (double numerator, double denominator)
{

double result = numerator / denominator;
return result;

}

Before dividing, check that denominator is not zero

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Common mistakes programming
Use of correct datatypes

• double in for statements
• Use of epsilon for checking
• Remember to use fabs/abs

double function divide (double numerator, double denominator)
{

double result = numerator / denominator;
return result;

}

Before dividing, check that denominator is not zero:

Double epsilon = 0.0001;
If (fabs(denominator) < epsilon)
…

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020 42

Shared resources: access control
Access control methods in programming

• Use data access control for shared variables

• mutual exclusion object (mutex) is a program object that allows multiple
program threads to share the same resource, such as file access, but not
simultaneously.

• Mutex example in C++:

std::mutex mu;

void shared_cout(std::string msg, int id)
{

mu.lock(); //Better
std::cout << msg << ":" << id << std::endl;
mu.unlock();

}

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020 43

Shared resources: access control
Access control methods in programming

• Semaphore: A semaphore does the same as a mutex but allows x number of
threads to enter.

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Version Control Systems

Version control systems

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020 45

Version Control Systems
Version Control System
Version control is a system that records changes to a file or set of files
over time so that you can recall specific versions later

Types:

1. Delta (files with modifications from previous to current version) e.g. SVN
2. Snapshot (store all files at each version) e.g. Git

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020 46

Version Control Systems
Version Control System
• Current configuration: distributed and redundant system
• Local and remote servers (free and payed)
• Remote servers for free:

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020 47

Version Control Systems
Git: The three states

• Modified means that you have changed the file but have not committed it to your
database yet.

• Staged means that you have marked a modified file in its current version to go into
your next commit snapshot.

• Committed means that the data is safely stored in your local database.

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020 48

Version Control Systems
Git Workflow

• A file inside working directory can be in state:
• Tracked: files that were in the last snapshot
• Not Tracked: any files in working directory that were not in your last snapshot

Life cycle of any file in Git

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020 49

Version Control Systems
Git basic instructions: easy to understand.

• git add begin tracking a new file (new file is in modified state, not in commited)
• git status gives a general view (all updated, files out of date, …)
• git diff shows you the exact lines added and removed
• git commit upload all added files (from modified to commited)
• git rm remove file from Git
• git log shows commit history

• etc

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020

Version Control Systems

Hands On: Example of code
commenting and documentation

Best practices in program
m

ing

Atlas NTA3 · KU Leuven · Feb 2020 51

Version Control Systems
Tools

• Programming IDE: Visual Studio with C++

• Automatic comments generator: GhostDoc Community Edition (free)

• Documentation: Doxygen & Doxywizard

	Número de diapositiva 1
	Número de diapositiva 2
	Número de diapositiva 3
	Número de diapositiva 4
	Número de diapositiva 5
	Número de diapositiva 6
	Número de diapositiva 7
	Número de diapositiva 8
	Número de diapositiva 9
	Número de diapositiva 10
	Número de diapositiva 11
	Número de diapositiva 12
	Número de diapositiva 13
	Número de diapositiva 14
	Número de diapositiva 15
	Número de diapositiva 16
	Número de diapositiva 17
	Número de diapositiva 18
	Número de diapositiva 19
	Número de diapositiva 20
	Número de diapositiva 21
	Número de diapositiva 22
	Número de diapositiva 23
	Número de diapositiva 24
	Número de diapositiva 25
	Número de diapositiva 26
	Número de diapositiva 27
	Número de diapositiva 28
	Número de diapositiva 29
	Número de diapositiva 30
	Número de diapositiva 31
	Número de diapositiva 32
	Número de diapositiva 33
	Número de diapositiva 34
	Número de diapositiva 35
	Número de diapositiva 36
	Número de diapositiva 37
	Número de diapositiva 38
	Número de diapositiva 39
	Número de diapositiva 40
	Número de diapositiva 41
	Número de diapositiva 42
	Número de diapositiva 43
	Número de diapositiva 44
	Número de diapositiva 45
	Número de diapositiva 46
	Número de diapositiva 47
	Número de diapositiva 48
	Número de diapositiva 49
	Número de diapositiva 50
	Número de diapositiva 51

