
Introduction to ROS
NTA3

Diego Dall’Alba
UNIVR - Altair Robotics Lab
NTA3 @ KU Leuven 24 -28 February 2020

Overview

• ROS architecture & philosophy

• ROS master, nodes, and topics

• Catkin workspace and build system

• ROS package structure

• Console commands

• Launch-files

• ROS C++ client library (roscpp)

• ROS subscribers and publishers

• ROS parameter server

• ROS services

• ROS actions (actionlib)

3NTA3 @ KU Leuven 24 -28 February 2020

Personal Introduction: Diego Dall’Alba

I am currently an Assistant Professor in Altair robotics

lab – Department of Computer Science @ University

of Verona (Italy)

I have worked in 4 European project before ATLAS:

• AccuRobAs

• Safros

• I-Sur

• MURAB

Actually, I am actively inveolved in ARS and ATLAS

4NTA3 @ KU Leuven 24 -28 February 2020

What is ROS (Robotic Operating System)?

• It is not a Operating System (OS)

• It is not an Application Programming Interface (API)

• It is not a «simple» framework

ROS is a middleware for robotic programming,
specifically designed for complex applications

BTW, What are OS, API, Framework and Middleware?
Which are the differences?

5NTA3 @ KU Leuven 24 -28 February 2020

Operating System
(Linux Ubuntu)

ROS

Applications

What are OS, API, Framework and Middleware?

• An application programming interface (API) is
an interface (e.g. set of functions and
methods, data types)intended to simplify
the implementation and maintenance of
software.

• An operating system (OS) is system software
that manages computer hardware, software
resources, and provides common services for
computer programs.

6NTA3 @ KU Leuven 24 -28 February 2020

What are OS, API, Framework and Middleware?

• Framework provide an infrastructure and a
methodology for quickly developing and
distributing complex software applications. Do
not try to do things not supported by the
framework!

• Middleware is a set of software tools (including
APIs and Frameworks) that provides services to
applications to enable easy communication and
integration of different modules/functionalities. It
can be described as "software glue".

7NTA3 @ KU Leuven 24 -28 February 2020

Why a middleware for robotic programming?

• Simplify development process

• provide simple and transparent inter-processes communication

• Provide software functionalities that are frequently needed in robotic

applications

• Abstract high complexity and heterogeneity of different hardware and

software components

• Provide an automatic and efficient process for configuring and

managing different resources and components

• Supporting embedded system and “low-resources devices”

8NTA3 @ KU Leuven 24 -28 February 2020

Quick background about robotic middleware
Many robotic middleware have been proposed, for example:
• Player/Stage: based on client-server architecture
• Miro - Middleware for Robots: distributed inter-process

communication(based on CORBA)
• OROCOS: designed for real-time applications
• URBI: focusing on component architecture and management
• YARP: Yet another robotic platform ☺

You could find a PARTIAL list of robotic middleware at:
https://en.wikipedia.org/wiki/Robotics_middleware

NOTE: The European Union has fundend at least 2 big research
projects (RoSta 1M and BRICS 10M). In the USA also DARPA invested
a huge amount of resources in the development robotic middleware

9NTA3 @ KU Leuven 24 -28 February 2020

https://en.wikipedia.org/wiki/Robotics_middleware

Quick background about ROS
• Video: https://vimeo.com/245826128
• Complete timeline/History: http://www.ros.org/history

• Originally developed, around 2007, from Stanford University,
Artificial Intelligence Lab

• Then developed with the collaboration of other research groups,
in particular Willow Garage

• Since 2013 developed and maintained by Open Source Robotic
Foundation (OSRF)

• It is de-facto standard for high level robotic programming in
research environment

• Recently the development of ROS2 has started but it is still in a
early stage. There is also a consortium called ROS Industrial
focused in transferring ROS modules in industrial applications

10NTA3 @ KU Leuven 24 -28 February 2020

https://vimeo.com/245826128
http://www.ros.org/history

ROS Characteristics

• Process
management

• Inter-process

communication

• Device drivers

11NTA3 @ KU Leuven 24 -28 February 2020

• Simulation

• Visualization

• Graphical
user
interface

• Data logging

• Control

• Planning

• Perception

• Mapping

• Manipulation

• Package
organization

• Software
distribution

• Documentation

• Tutorials

ROS Philosophy

• Peer to peer : Individual programs communicate over defined API
(ROS messages, services, etc.).

• Distributed: Programs can be run on multiple computers and
communicate over the network.

• Multi-language support: ROS modules can be written in any
programming language for which a client library exists (C++,
Python, MATLAB, Java, etc.).

• Light-weight: Stand-alone libraries are wrapped around with a
thin ROS layer.

• Free and open-source: Most ROS software is open-source and
free to use.

12NTA3 @ KU Leuven 24 -28 February 2020

ROS Distributions

• A ROS distribution is a versioned set of ROS packages.

• These are similar to Linux distributions (e.g. Ubuntu).

• The purpose of the ROS distributions is to let developers work

against a relatively stable codebase

Release rules

• ROS release timing is based on need and available resources

• All future ROS 1 releases are LTS, supported for five years

• ROS releases will drop support for EOL Ubuntu distributions,

even if the ROS release is still supported.

13NTA3 @ KU Leuven 24 -28 February 2020

Partial List of ROS and Ubuntu Distributions

14NTA3 @ KU Leuven 24 -28 February 2020

Operating System
(Linux Ubuntu)

ROS

Applications

Choosing the right ROS distribution

15NTA3 @ KU Leuven 24 -28 February 2020

Operating System
(Linux Ubuntu)

ROS

Applications

• Changing ROS Distribution is usually quite complex, it depends on the
specific application and development cycle

• Try to keep the same distribution in the same project

• Separate different distribution in different machine

• We will use Kinetic Kame on Linux 16.04 (Xenial Xerus)

ROS Architecture: Basics

ROS MASTER

• Manages the communication between nodes (XML-RPC

server + naming and communication services)

• Every node registers at start-up with the master

• Nodes can run on different workstation and

communicate through network (transparent to user)

ROS NODE

• Single-purpose, executable program

• Individually compiled, executed, and managed

• Organized in packages

16NTA3 @ KU Leuven 24 -28 February 2020

ROS
MASTER

ROS
NODE 1

ROS
NODE 2

Configuring the ROS environment

ROS MASTER

I am assuming that you have intalled ROS following the

offical guide available at:

http://wiki.ros.org/kinetic/Installation/Ubuntu

The first step is always configuring the Linux environment:

Then you will be able to run

It will run ROS master + other important services (logging
and parameters server)

17NTA3 @ KU Leuven 24 -28 February 2020

ROS
MASTER

ROS
NODE 1

ROS
NODE 2

source /opt/ros/kinetic/setup.bash

roscore

http://wiki.ros.org/melodic/Installation/Ubuntu

Configuring the ROS environment

Essential variables are:

• ROS_ROOT sets the location where the ROS core packages are installed.

• ROS_MASTER_URI is a required setting that tells nodes where they can locate the master.

• ROS requires that your PYTHONPATH be updated, even if you don't program in Python! Many
ROS infrastructure tools rely on Python

18NTA3 @ KU Leuven 24 -28 February 2020

source /opt/ros/kinetic/setup.bash

This command is fundamental for correctly

configuring all environment variables required for:

• Finding packages

• Effecting a Node runtime

• Modifying the build system

ROS Build System (1)

catkin is the official build system of ROS starting from ROS Groovy and the successor to the

original ROS build system, rosbuild.

catkin combines CMake macros and Python scripts to provide some functionality on top of

CMake's normal workflow (improved automatic dependencies management and compilation of

large project)

The name catkin comes from the tail-shaped flower cluster found on willow trees -- a reference

to Willow Garage where catkin was created.

It is essential to know catkin build process for proficiently use ROS build system, having a good

knowledge of CMake is also helping a lot in solving many problem when working in ROS

19NTA3 @ KU Leuven 24 -28 February 2020

ROS Build System (2)

catkin build system is organized in a workspace containing different spaces and

packages, this feature is very useful for having a common files/directory structure and

for building multiple packages with complex dependencies.

A typical catkin workspace contains 4 (5) spaces:

• Source Space

• Build Space

• Devel space

• Install space

• (Log Space)

20NTA3 @ KU Leuven 24 -28 February 2020

Result Space

Please keep separate catkin workspace when you use

catkin_make and where you use catkin command line

tools (e.g. catkin init ; catkin build).

Many tutorial available online use catkin_make, even

if I strongly suggest using catkin build

NEVER MIX THE TWO COMMANDS IN THE SAME WS

ROS Build System (3)

The source space contains

the source code. This is
where

you can clone, create, and

edit source code for the

packages you want to
build.

21NTA3 @ KU Leuven 24 -28 February 2020

Work Here Don’t Touch Don’t Touch

The development (devel)

space is where built targets

are placed (prior to being

installed).

The build space is where

CMake is invoked to build the

packages in the source

space. Cache information and

other intermediate files are

kept here.

Example of creating of a new catkin
workspace using command line tools

22NTA3 @ KU Leuven 24 -28 February 2020

source /opt/ros/kinetic/setup.bash
mkdir -p /tmp/quickstart_ws/src # Make a new workspace
cd /tmp/quickstart_ws # Navigate to the workspace root
catkin init # Initialize it
cd /tmp/quickstart_ws/src # Navigate to the source space
catkin create pkg pkg_a # Populate the source space
catkin create pkg pkg_b
catkin create pkg pkg_c --catkin-deps pkg_a
catkin create pkg pkg_d --catkin-deps pkg_a pkg_b
catkin list # List the packages in the workspace
catkin build # Build all packages in the workspace
source /tmp/quickstart_ws/devel/setup.bash

Typical structure of Catkin Source Space

The source space
contains the source
code.

Organized in different
packages

23NTA3 @ KU Leuven 24 -28 February 2020

workspace_folder/ -- CATKIN WORKSPACE
src/ -- SOURCE SPACE

package_1/
CMakeLists.txt -- CMakeLists.txt file for package_1
package.xml -- Package manifest for package_1

...
package_n/

CMakeLists.txt -- CMakeLists.txt file for package_n
package.xml -- Package manifest for package_n

CMakeLists.txt is the configuration file for CMake→ see Cmake docs for more details

Package.xml is a supporting file providing additiona package info and dependencies for catkin
build system.

Typical structure of a package.xml

24NTA3 @ KU Leuven 24 -28 February 2020

<package>
<name>foo_core</name>
<version>1.2.4</version>
<description>
This package provides foo capability.

</description>
<maintainer email="ivana@willowgarage.com">Ivana

Bildbotz</maintainer>
<license>BSD</license>

<buildtool_depend>catkin</buildtool_depend>
</package>

Typical structure of a package.xml

25NTA3 @ KU Leuven 24 -28 February 2020

<package>
<name>foo_core</name>
<version>1.2.4</version>
<description> This package provides foo capability. </description>
<maintainer email="ivana@willowgarage.com">Ivana Bildbotz</maintainer>
<license>BSD</license>

<url>http://ros.org/wiki/foo_core</url>
<author>Ivana Bildbotz</author>
<buildtool_depend>catkin</buildtool_depend>

<build_depend>message_generation</build_depend>
<build_depend>roscpp</build_depend>
<build_depend>std_msgs</build_depend>

<run_depend>message_runtime</run_depend>
<run_depend>roscpp</run_depend>
<run_depend>rospy</run_depend>
<run_depend>std_msgs</run_depend>

<test_depend>python-mock</test_depend>
</package>

See previous slide
For more details please check:

http://wiki.ros.org/catkin/concept
ual_overview#Dependency_Mana
gement

<build_depend>

Build Dependencies

<run_depend> Run Dependencies

<test_depend>Test Dependencies

<buildtool_depend>

Build Tool Dependencies

http://wiki.ros.org/catkin/conceptual_overview#Dependency_Management

Typical structure of a CMakeLists.txt

26NTA3 @ KU Leuven 24 -28 February 2020

CMake could be considered as a
“meta build system”

CMake support a specific
scripting language for the
creation of its configuration files

cmake_minimum_required(VERSION 2.8)
project(app_project)
add_executable(myapp main.c)
install(TARGETS myapp DESTINATION bin)

cmake_minimum_required(VERSION 2.8)
project(libtest_project)
add_library(test STATIC test.c)
install(TARGETS test DESTINATION lib)
install(FILES test.h DESTINATION include)

cmake_minimum_required(VERSION 2.8)
project(myapp)
add_subdirectory(libtest_project)
add_executable(myapp main.c)
target_link_libraries(myapp test)
install(TARGETS myapp DESTINATION bin)

More than 300 pages!

File config.
CMakeLists.txt

A more realistic CMakeLists.txt

27NTA3 @ KU Leuven 24 -28 February 2020

When working in ROS (using C++
API) you need to modify
CMakeLists.txt file prepared by
catkin.

If you correctly use catkin the
modification of the CMakeLists.txt
are (almost ☺) straightforward

Many problems (i.e., errors) when
working with ROS are related to
wrong configuration of CMake
build process → useful for
searching the right solution ☺

ExternalProject_Add(project_luajit
URL http://luajit.org/download/LuaJIT-2.0.1.tar.gz
PREFIX ${CMAKE_CURRENT_BINARY_DIR}/luajit-2.0.1
CONFIGURE_COMMAND ""
BUILD_COMMAND make
INSTALL_COMMAND make install
PREFIX=${CMAKE_CURRENT_BINARY_DIR}/luajit-2.0.1

)
ExternalProject_Get_Property(project_luajit install_dir)
add_library(luajit STATIC IMPORTED)
set_property(TARGET luajit PROPERTY IMPORTED_LOCATION
${install_dir}/lib/libluajit-5.1.a)
add_dependencies(luajit project_luajit)
add_executable(myapp main.c)
include_directories(${install_dir}/include/luajit-2.0)
target_link_libraries(myapp luajit)

Example of ROS Cmakelists.txt

28NTA3 @ KU Leuven 24 -28 February 2020

ROS Nodes

29NTA3 @ KU Leuven 24 -28 February 2020

ROS Topics

30NTA3 @ KU Leuven 24 -28 February 2020

31NTA3 @ KU Leuven 24 -28 February 2020

ROS Messages

32NTA3 @ KU Leuven 24 -28 February 2020

ROS Message Example: PoseStamped

33NTA3 @ KU Leuven 24 -28 February 2020

ROS Client Library (1)

A ROS client library is a collection of code that eases the job of the
ROS programmer.
It takes many of the ROS concepts and makes them accessible via
code.
In general, these libraries let you to:

• write ROS nodes,
• publish and subscribe to topics,
• write and call services,
• use the Parameter Server.

Such a library can be implemented in any programming language

34NTA3 @ KU Leuven 24 -28 February 2020

Main Client Libraries

• roscpp : roscpp is a C++ client library for ROS. It is the most widely used
ROS client library and is designed to be the high performance library for
ROS.

• rospy: rospy is the pure Python client library for ROS and is designed to
provide the advantages of an object-oriented scripting language to ROS.
The design of rospy favors implementation speed (i.e. developer time)
over runtime performance.

The ROS Master, roslaunch, and other ros tools are developed in rospy, so
Python is a core dependency of ROS.

35NTA3 @ KU Leuven 24 -28 February 2020

Basic tutorial

• Roscpp tutorial:
http://wiki.ros.org/roscpp_tutorials/Tutorials/WritingPublisherSubscriber

• Rospy tutorial:
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28python%
29

http://wiki.ros.org/roscpp_tutorials/Tutorials/WritingPublisherSubscriber
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28python%29

36NTA3 @ KU Leuven 24 -28 February 2020

ROSCPP Basic Source code

37NTA3 @ KU Leuven 24 -28 February 2020

ROSCPP Logging

38NTA3 @ KU Leuven 24 -28 February 2020

ROSCPP Subscriber

39NTA3 @ KU Leuven 24 -28 February 2020

ROSCPP Publisher

40NTA3 @ KU Leuven 24 -28 February 2020

ROSCPP Publisher

41NTA3 @ KU Leuven 24 -28 February 2020

ROS Launch

42NTA3 @ KU Leuven 24 -28 February 2020

ROS Launch:
File format

43NTA3 @ KU Leuven 24 -28 February 2020

ROS Launch:
Arguments

44NTA3 @ KU Leuven 24 -28 February 2020

ROS Launch:
Parameter server and YAML format

45NTA3 @ KU Leuven 24 -28 February 2020

ROSCPP: Parameter server

46NTA3 @ KU Leuven 24 -28 February 2020

ROSCPP: Node handle Types

47NTA3 @ KU Leuven 24 -28 February 2020

ROS Services

48NTA3 @ KU Leuven 24 -28 February 2020

ROS Actions (actionlib)

49NTA3 @ KU Leuven 24 -28 February 2020

ROS Services and Actions Definition example

50NTA3 @ KU Leuven 24 -28 February 2020

ROS Parameters, Dynamic Reconfigure, Topics, Services, and
Actions Comparison

Questions?

51NTA3 @ KU Leuven 24 -28 February 2020

52NTA3 @ KU Leuven 24 -28 February 2020

Exercises A

• Install the following Ubuntu package:

• Understand «turtlesim» package
• navigate package contents
• run different nodes
• understand the communication

architecture
• Create a separate package in your

catkin workspace able to move the
turtle on a circular trajectory

• Use roslauch to set parameters
(radius and speed)

ros-kinetic-ros-tutorials

turtlesim_node

turtle_teleop_key

53NTA3 @ KU Leuven 24 -28 February 2020

Exercises B

Remote teleoperation of turtle_bot:
• Following tutorial here:

• Run the turtlesim_node and the
turtle_teleop_key on two different machine

• Introduce a node publishing a status message
able to change the spinning direction of the
node previously implemented (modification
requred)

http://wiki.ros.org/ROS/Tutorials/MultipleMachines

turtlesim_node

turtle_teleop_key

http://wiki.ros.org/ROS/Tutorials/MultipleMachines

54NTA3 @ KU Leuven 24 -28 February 2020

Exercises B

Implement the talker→ listener
example (following C++ or python
tutorial)

Modify the code for printing the
following string «Hello world from
ESRxx counter»

Run a single listener for all the talker
implemented

