W ATLAS

Introduction to ROS
NTA3

Diego Dall’Alba

UNIVR - Altair Robotics Lab
NTA3 @ KU Leuven 24 -28 February 2020

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020

Overview

ROS architecture & philosophy
ROS master, nodes, and topics
Catkin workspace and build system
ROS package structure

Console commands
Launch-files

ROS C++ client library (roscpp)
ROS subscribers and publishers
ROS parameter server

ROS services

ROS actions (actionlib)

Personal Introduction: Diego Dall’Alba

| am currently an Assistant Professor in Altair robotics
lab — Department of Computer Science @ University
of Verona (ltaly)

| have worked in 4 European project before ATLAS:
* AccuRobAs

e Safros
e |-Sur
« MURAB \
Actually, | am actively inveolved in ARS and ATLAS / o
MR

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020 4

What is ROS (Robotic Operating System)?

* Itis not a Operating System (OS) Applications
e Itis not an Application Programming Interface (API) | ROS |
* Itis nota «simple» framework Operating System

(Linux Ubuntu)

ROS is a middleware for robotic programming, =
specifically designed for complex applications { wia

BTW, What are OS, API, Framework and Middleware?
Which are the differences?

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020 5

What are OS, API, Framework and Middleware?

* An application programming interface (API) is
an interface (e.g. set of functions and
methods, data types)intended to simplify
the implementation and maintenance of
software.

* An operating system (OS) is system software
that manages computer hardware, software
resources, and provides common services for
computer programs.

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020 6

What are OS, API, Framework and Middleware?

* Framework provide an infrastructure and a
methodology for quickly developing and
distributing complex software applications. Do
not try to do things not supported by the
framework!

 Middleware is a set of software tools (including
APls and Frameworks) that provides services to
applications to enable easy communication and
integration of different modules/functionalities. It
can be described as "software glue".

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020 7

Why a middleware for robotic programming?

 Simplify development process
 provide simple and transparent inter-processes communication

* Provide software functionalities that are frequently needed in robotic
applications

e Abstract high complexity and heterogeneity of different hardware and
software components

* Provide an automatic and efficient process for configuring and
managing different resources and components

 Supporting embedded system and “low-resources devices”

L ATLAS NTA3 @ KU Leuven 24 -28 February 2020

Quick background about robotic middleware

Many robotic middleware have been proposed, for example:
* Player/Stage: based on client-server architecture

 Miro - Middleware for Robots: distributed inter-process
communication(based on CORBA)

* OROCOS: designed for real-time applications
* URBI: focusing on component architecture and management
* YARP: Yet another robotic platform ©

You could find a PARTIAL list of robotic middleware at:
https://en.wikipedia.org/wiki/Robotics middleware

yet another
robot

NOTE: The European Union has fundend at least 2 big research
projects (RoSta 1M and BRICS 10M). In the USA also DARPA invested
a huge amount of resources in the development robotic middleware

L ATLAS NTA3 @ KU Leuven 24 -28 February 2020

https://en.wikipedia.org/wiki/Robotics_middleware

Quick background about ROS 4

(N N
* Video: https://vimeo.com/245826128
* Complete timeline/History: http://www.ros.org/history

* Originally developed, around 2007, from Stanford University,

(]
Willow
Artificial Intelligence Lab |
* Then developed with the collaboration of other research groups, “

in particular Willow Garage

* Since 2013 developed and maintained by Open Source Robotic
Foundation (OSRFF

open
* It is de-facto standard for high level robotic programming in (’ robotics

research environment

* Recently the development of ROS2 has started but it is still in a
early stage. There is also a consortium called ROS Industrial
focused in transferring ROS modules in industrial applications

L ATLAS NTA3 @ KU Leuven 24 -28 February 2020

https://vimeo.com/245826128
http://www.ros.org/history

ROS Characteristics

il 2> =+
Plumbing Tools
e Process * Simulation
management * Visualization
. Inter-PrOCéss . Graphical
communication user
* Device drivers interface

 Datalogging

L ATLAS NTA3 @ KU Leuven 24 -28 February 2020

Capabilities

Control
Planning
Perception
Mapping

Manipulation

Ecosystem

Package
organization

Software
distribution

Documentation

Tutorials

11

ROS Philosophy

* Peer to peer : Individual programs communicate over defined API
(ROS messages, services, etc.).

* Distributed: Programs can be run on multiple computers and
communicate over the network.

* Multi-language support: ROS modules can be written in any
programming language for which a client library exists (C++,
Python, MATLAB, Java, etc.).

* Light-weight: Stand-alone libraries are wrapped around with a
thin ROS layer.

* Free and open-source: Most ROS software is open-source and
free to use.

L ATLAS NTA3 @ KU Leuven 24 -28 February 2020

ROS Distributions

LTS, supported until April, 2021

A ROS distribution is a versioned set of ROS packages.
* These are similar to Linux distributions (e.g. Ubuntu).

e The purpose of the ROS distributions is to let developers work
against a relatively stable codebase

Re I ease ru IES ROS Melodic Morenia

Released May, 2018
Latest LTS, supported until May, 2023

* ROS release timing is based on need and available resources
e All future ROS 1 releases are LTS, supported for five years

* ROS releases will drop support for EOL Ubuntu distributions,
even if the ROS release is still supported.

L ATLAS NTA3 @ KU Leuven 24 -28 February 2020

Partial List of ROS and Ubuntu Distributions

Tuturtle, turtle in
tutorial

Distro Release date

ROS Noetic
Ninjemys

May, 2020 (planned, see Upcoming

TBA
Releases)

ROS Lunar

Lodaerhead Ma_y 23rd, 2017

ROS Jade Turtle

May 23rd, 2015

ROS Indigo Igloo July 22nd, 2014

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020

EOL date

May, 2025
(planned)

May, 2019

May, 2017

April, 2019

(Trusty EOL)

I Applications

| ROS |
Operating System
(Linux Ubuntu)
Version # Code name Release date & | Supporteduntil #
14.04 LTS Trusty Tahr®] 2014-04-17 2019-04
14.10 Utopic Unicornl®?] 2014-10-23(%3 2015-07-23
15.04 Vivid Vervet!94] 2015-04-23 2016-02-04
15.10 Wily Werewolf(°! 2015-10-22[% 2016-07-281°71
16.04 LTS Xenial Xerus(®®] 2016-04-21%9 2021-04
16.10 Yakkety Yakl100! 2016-10-13(101] 2017-07-20[102]
17.04 Zesty Zapus 2017-04-13(10] 2018-01-130104]
17.10 Artful Aardvark 2017-10-19[10%] 2018-07-19[108]
18.04 LTS Bionic Beaver 2018-04-261107] 2028-040"°1
18.10 Cosmic Cuttlefishl %] 2018-10-18[10%] 2019-07
19.04 Disco Dingol'10] 2019-04 2020-01
Legend: Old version Older version, still supported Latest version Future release

Choosing the right ROS distribution

New Capability Major Update Frequency Recommended distro
Preferred but not required Not preferred Latest LTS (Melodic)
_ Applications
Much preferred Acceptable Latest (Melodic)
Much preferred Not preferred Switch to the latest LTS every 2 year I ROS I
Specific platform is required other than Ubuntu 16.04 @ See REP-3 for supported platform
Newer Gazebo is needed Use Melodic for Gazebo 9 Op(.-:-ratlng System
(Linux Ubuntu)
| want to use OpenCV3 Indigo or later

* Changing ROS Distribution is usually quite complex, it depends on the
specific application and development cycle

* Try to keep the same distribution in the same project
e Separate different distribution in different machine
* We will use Kinetic Kame on Linux 16.04 (Xenial Xerus)

L ATLAS NTA3 @ KU Leuven 24 -28 February 2020

ROS Architecture: Basics

ROS MASTER
* Manages the communication between nodes (XML-RPC ROS
server + naming and communication services) MASTER

2

* Every node registers at start-up with the master

* Nodes can run on different workstation and ROS ROS
communicate through network (transparent to user) NODE 1 NODE 2
ROS NODE

* Single-purpose, executable program
* Individually compiled, executed, and managed

* Organized in packages

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020 16

Configuring the ROS environment

ROS
MASTER

ROS MASTER |

| am assuming that you have intalled ROS following the

ROS ROS

offical guide available at: NODE 1 NODE 2

http://wiki.ros.org/kinetic/Installation/Ubuntu e

roscore http://victors:11311/
File Edit View Search Terminal Help
ai-ray@victors:~5 roscore

The first step is always configuring the Linux environment: .- ogging o Jhore)at ray/.ros/log/ 46998530 5220-1169-ade1

unch-victors- g

Checking log ectory for disk usage. This may take awhile.
Press Ctrl-C to interrupt

Done checking log file disk usage. Usage is <1GB.

source /opt/ros/kinetic/setup.bash

started roslaunch server http://victors:41423/
ros_comm version 1.14.3

Then you will be able to run

PARAMETERS

rOSCO re * frosdistro: meledic

* frosversion: 1.14.3

NODES

auto-starting new master

It will run ROS master + other important services (logging
and parameters server) R0S MASTER URT-hetp://victors: 12311/

setting /run_id to 4699893e-522a-11e9-ad61-0800271b6865
process[rosout-1]: started with pid [2227]
started core service [/rosout]

L ATLAS NTA3 @ KU Leuven 24 -28 February 2020

http://wiki.ros.org/melodic/Installation/Ubuntu

Configuring the ROS environment

source /opt/ros/kinetic/setup.bash

This command is fundamental for correctly
configuring all environment variables required for:

* Finding packages
* Effecting a Node runtime

* Modifying the build system

Essential variables are:

ai-ray@victors: ~

File Edit View Search Terminal Help

al-ray@victors:~$ source foptfros/melodic/setup.bash
al-ray@victors:~5% printenv | grep -e ros -e ROS
LD LIBRARY PATH=/opt/ros=/melodic/lib

_ETC_DIR=/fopt/ /melodic/etc/
CMAKE_PREFIX_PATH=/opt/ro=/melodic

_ROOT=/opt/ /melodic/share/

_MASTER_URI=http://localhost:11311

_VERSION=1

_PYTHON_VERSION=2
PYTHONPATH=/opt/ /melodic/1ib/python2.7/dist-packages

_PACKAGE PATH=/opt/ /melodic/share

LISP PACKAGE DIRECTORIES=
PATH=/opt/ /melodic/bin: fusrflocal/sbin: fusrflocal/bin: fusr/sb
in:/bin: fusr/games: fusr/local/games: /snap/bin
PKG_CONFIG_PATH=/opt/ros/melodic/1lib/pkgconfig

_DISTRO=melodic
ai-ray@victors:~%

e

 ROS_ROOT sets the location where the ROS core packages are installed.

e ROS_MASTER_URI is a required setting that tells nodes where they can locate the master.

* ROS requires that your PYTHONPATH be updated, even if you don't program in Python! Many

ROS infrastructure tools rely on Python

L ATLAS NTA3 @ KU Leuven 24 -28 February 2020

ROS Build System (1) P

B CATKIN = AcMake <5 phon

B Ul L DSYSTIEM
catkin is the official build system of ROS starting from ROS Groovy and the successor to the
original ROS build system, rosbuild.

catkin combines CMake macros and Python scripts to provide some functionality on top of

CMake's normal workflow (improved automatic dependencies management and compilation of
large project)

The name catkin comes from the tail-shaped flower cluster found on willow trees -- a reference
to Willow Garage where catkin was created.

It is essential to know catkin build process for proficiently use ROS build system, having a good
knowledge of CMake is also helping a lot in solving many problem when working in ROS

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020 19

ROS Build System (2) u CATKIN

B Ul L DSYSTEM

catkin build system is organized in a workspace containing different spaces and
packages, this feature is very useful for having a common files/directory structure and
for building multiple packages with complex dependencies.

A typical catkin workspace contains 4 (5) spaces:

* Source Space Please keep separate catkin workspace when you use
catkin_make and where you use catkin command line
tools (e.g. catkin init ; catkin build).

* Devel space . | | |
Man rial lable onlin kin_mak n
Result Space | any tutoria avalabéo | e-use c'at in_make, eve
* Install space if | strongly suggest using catkin build

* (Log Space) NEVER MIX THE TWO COMMANDS IN THE SAME WS

e Build Space

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020 2

ROS Build System (3) u CATKIN

B Ul L DSYSTEM

Work Here Don’t Touch Don’t Touch
- - el
SrC build devel
The source space contains The build space is where The development (devel)
the source code. This is CMake is invoked to build the space is where built targets
where packages in the source are placed (prior to being
you can clone, create, and space. Cache information and installed).

edit source code for the . . .
other intermediate files are

k tt
paCagEs YOUWANLIO ypi e

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020 2

Example of creating of a new catkin u
workspace using command line tools

CATKIN

B UILDZSYSTEM

source /opt/ros/kinetic/setup.bash

mkdir -p /tmp/quickstart_ws/src # Make a new workspace

cd /tmp/quickstart_ws # Navigate to the workspace root
catkin init # Initialize it

cd /tmp/quickstart_ws/src # Navigate to the source space
catkin create pkg pkg a # Populate the source space

catkin create pkg pkg b

catkin create pkg pkg_c --catkin-deps pkg_a

catkin create pkg pkg d --catkin-deps pkg a pkg b

catkin list # List the packages in the workspace
catkin build # Build all packages in the workspace

» source /tmp/quickstart_ws/devel/setup.bash

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020

Typical structure of Catkin Source Space u CATKIN

B Ul L DSYSTEM

: workspace_folder/ -- CATKIN WORKSPACE
cre L_src/ -- SOURCE SPACE
—package 1/
The source space CMakelists.txt -- CMakelists.txt file for package 1
contains the source package.xml -- Package manifest for package 1
code. .
Organized in different — package_n/
packages CMakelists.txt -- CMakelists.txt file for package n
package.xml -- Package manifest for package n

CMakelists.txt is the configuration file for CMake - see Cmake docs for more details

Package.xml is a supporting file providing additiona package info and dependencies for catkin
build system.

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020 2’

Typical structure of a package.xml

CATKIN

B Ul L DSYSTEM

<package>

<name>foo_core</name>

<version>1.2.4</version>

<description>

This package provides foo capability.

</description>

<maintainer email="ivana@willowgarage.com">Ivana
Bildbotz</maintainer>

<license>BSD</license>

<buildtool_depend>catkin</buildtool _depend>
</package>

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020

24

Typical structure of a package.xmli u CATKIN

B Ul L DSYSTEM

For more details please check:
} See previous slide http://wiki.ros.org/catkin/concept

ual overview#Dependency Mana
<build_depend>message generation</build_depend> gement

<build_depend>roscpp</build_depend> p <build_depend>
<build_depend>std_msgs</build_depend> —

Build Dependencies

<run_depend>message_runtime</run_depend> <ru n_depend> Run Dependencies
<run_depend>roscpp</run_depend> /

<run_depend>rospy</run_depend>
<run_depend>std_msgs</run_depend> <buildtool_depend>

Build Tool Dependencies

<test_depend>Test Dependencies

<test_depend>python-mock</test_depend>
</package>

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020 s

http://wiki.ros.org/catkin/conceptual_overview#Dependency_Management

More than 300 pages!

Typical structure of a CMakelLists.txt

cmake_minimum_required(VERSION 2.8)
project(app_project)
add_executable(myapp main.c)
install(TARGETS myapp DESTINATION bin)

cmake_minimum_required(VERSION 2.8)
project(libtest_project)

add_library(test STATIC test.c)
install(TARGETS test DESTINATION lib)
install(FILES test.h DESTINATION include)

cmake_minimum_required(VERSION 2.8)
project(myapp)
add_subdirectory(libtest_project)
add_executable(myapp main.c)
target_link_libraries(myapp test)
install(TARGETS myapp DESTINATION bin)

M astering ClMake NN

A Cross-Platform Build System

CMake 3.1

CMake could be considered as a
“meta build system”

CMake support a specific
scripting language for the
creation of its configuration files A i

- o
21— A CMake
File config. %

CMakelists.txt

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020

A more realistic CMakeLists.txt

ExternalProject_Add(project_luajit
URL http://luajit.org/download/LualIiT-2.0.1.tar.gz
PREFIX S{CMAKE_CURRENT_BINARY_DIR}/luajit-2.0.1
CONFIGURE_COMMAND ""
BUILD COMMAND make
INSTALL._ COMMAND make install
PREFIX=S{CMAKE_CURRENT_BINARY_DIR}/luajit-2.0.1
)
ExternalProject_Get_Property(project_luajit install_dir)
add_library(luajit STATIC IMPORTED)
set_property(TARGET luajit PROPERTY IMPORTED_LOCATION
S{install_dir}/lib/libluajit-5.1.a)
add_dependencies(luajit project_luajit)
add_executable(myapp main.c)
include_directories(S{install_dir}/include/luajit-2.0)
target_link_libraries(myapp luajit)

B CATKIN

B Ul L DSYSTEM

When working in ROS (using C++
API) you need to modify
CMakelists.txt file prepared by
catkin.

If you correctly use catkin the

modification of the CMakelLists.txt

are (almost ©) straightforward

L ATLAS NTA3 @ KU Leuven 24 -28 February 2020

Many problems (i.e., errors) when
working with ROS are related to
wrong configuration of CMake
build process = useful for
searching the right solution ©

27

Example of ROS Cmakelists.txt u C ATK' N

L DSY STUEM

cmake_minimum_required(VERSION 2.8.3) Use the same name as in the package.xml
project(husky_highlevel controller)
add_definitions(--std=c++11) , We use C++11 b}' default
find_package(catkin REQUIRED . .
CGMEGNE,,?S roscpp sensor_msgs List the packages that your package requires to
) build (have to be listed in package.xml)
catkin_package(- Specify build export information
INCLUDE_DIRS include « INCLUDE_DIRS: Directories with header files
EA#E&AEEEENDS * LIBRARIES: Libraries created in this project
P roscpp sensor_msgs + CATKIN_DEPENDS: Packages dependent projects also need

» DEPENDS: System dependencies dependent projects also need
(have to be listed in package.xml)

include_directories(include ${catkin_INCLUDE_DIRS}) — | Sp&Cif}’ locations of of header files

)

add_executable(${PROJECT_NAME} src/${PROJECT_NAME}_node.cpp

src/HuskyHighlevelController.cpp) —— Declare a C++ executable

target_link_libraries(${PROJECT_NAME} ${catkin_LIBRARIES}) —— Specify libraries to link the executable against

28

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020

ROS Nodes

Single-purpose, executable program ROS Master

Individually compiled, executed, and
man aged Registration Registration

Organized in packages

Run a node with

> rosrun package _name node_name

See active nodes with

> rosnode list

Retrieve information about a node with

More info

> rosnode info node_name http://wiki.ros.org/rosnode

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020 29

ROS Topics

Nodes communicate over topics
= Nodes can publish or subscribe to a topic
= Typically, 1 publisher and n subscribers

Topic is a name for a stream of messages

List active topics with

> rostopic list
Subscribe and print the contents of a topic with
> rostopic echo /topic

Show information about a topic with

> rostopic info /topic

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020

ROS Master

Registration Registration

_Informs about
“yconnection
l'.f

Node 1 Messages Node 2
Publisher Subscriber
Publish [: Subscribe
*| topic .
Subscribe

More info
http://wiki.ros.org/rostopic

30

ROS Messages

= Data structure defining the type of a topic ROS Master
= Compromised of a nested structure of o o
integers, floats, booleans, strings etc. and Registration Registration

arrays of objects
= Defined in *.msg files

Node 1 Node 2
Publisher Subscriber
See the type of a topic
> rostopic type /topic Publish | : Subscribe
*| topic \
Publish a message to a topic . f Subscribe
J P *msg | Message definition
> rostopic pub /topic type args '
More info

http://wiki.ros.org/Messages

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020

ROS Message Example: PoseStamped

geometry msqgs/Point.msqg

qgeometry msqs/PoseStamped.msq

floatb4d x
float64 y
floate4d z

sensor msqgs/Image.msq

std msgs/Header header

uint32 seq

time stamp

string frame id
geometry msgs/Pose pose
, geometry msgs/Point position

std msgs/Header header
uint32 seq
time stamp
string frame id
uint32 height
uint32 width
string encoding
uint8 is bigendian
uint32 step
uint8[] data

float64 x
float64 y
float64d z
geometry_msgs/Quaternion
orientation
float64 x
float64 y
float64d z
float64 w

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020

32

ROS Client Library (1)

A ROS client library is a collection of code that eases the job of the
ROS programmer.
It takes many of the ROS concepts and makes them accessible via
code.
In general, these libraries let you to:
e write ROS nodes,
e publish and subscribe to topics,

Such a library can be implemented in any programming language

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020 33

Main Client Libraries

* roscpp : roscpp is a C++ client library for ROS. It is the most widely used
ROS client library and is designed to be the high performance library for
ROS.

* rospy: rospy is the pure Python client library for ROS and is designed to
provide the advantages of an object-oriented scripting language to ROS.
The design of rospy favors implementation speed (i.e. developer time)
over runtime performance.

The ROS Master, roslaunch, and other ros tools are developed in rospy, so

Python is a core dependency of ROS.

L ATLAS NTA3 @ KU Leuven 24 -28 February 2020

Basic tutorial

* Roscpp tutorial:
http://wiki.ros.org/roscpp tutorials/Tutorials/WritingPublisherSubscriber

* Rospy tutorial:
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28python%

29

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020

http://wiki.ros.org/roscpp_tutorials/Tutorials/WritingPublisherSubscriber
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28python%29

ROSCPP Basic Source code

hello_world.cpp

#include <ros/ros.h> | ROS main header file include

int main(int argc, char** argv) ros::init(..) has to be called before calling other ROS functions

{) . The node handle is the access point for communications with the
ros::init(argc, argv, "hello_world"); —

ros: :NodeHandle nodeliandle: ROS system (topics, services, parameters)
ros::Rate loopRate(10);

ros::Rate is a helper class to run loops at a desired frequency

unsigned int count = 8; . . .
uhilg (ros: :0k()) { | ros::ok() checks if a node should continue running

ROS_INFO_STREAM("Hello World " << cnunt);——L Returns false if SIGINT is received (Ctrl + C) or ros: :shutdown() has been called

ros: :spinOnce();
loopRate.sleep();

count++;
} ros::spinOnce() processes incoming messages via callbacks

ROS INFO() logs messages to the filesystem

return 6;

} More info
http://wiki.ros.org/roscpp
http://wiki.ros.org/roscpp/Overview

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020 36

ROSCPP Logging

= Mechanism for logging human readable text | Debug Info ~ Warn Error Fatal |
from nodes in the console and to log files stdout X X
* |nstead of std: :cout, use e.g. ROS_INFO stderr X X X
= Automatic logging to console, log file, and Log file X X X X X
/rosout topic /rosout X X X X X
= Different severity levels (Info, Warn, Error etc.)
= Supports both printf- and stream-style formatting To see the output in the console, set the output
ROS INFO("Result: %d", result); ! configuration to screen in the launch file
ROS_INFO STREAM("Result: " << result); <launchs
L <node name="listener" @ut:"scre@
= Further features such as conditional, throttled, </launch>
delayed logging etc. More info

http://wiki.ros.org/rosconsole
http://wiki.ros.org/roscpp/Overview/Logging

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020 37

ROSCPP Subscriber

listener.cpp
: . . : #include "ros/ros.h"
= Start listening to_a topic by calling the #include "std msge/String.h”
method subscribe() of the node handle
void chatterCallback(const std_msgs::String& msg)
ros: :Subscriber subscriber = {
nodeHandle.subscribe(topic, queue size, ROS_INFO("I heard: [%s]", msg.data.c_str());
callback_function); ¥
. . int main(int argc, char **argv)
= \When a message is received, callback —— {
function is called with the contents of the ros::init(argc, argv, "listener”);
ros: :NodeHandle nodeHandle;
message as argument

ros::Subscriber subscriber =

= Hold on to the subscriber UbjECt until you nodeHandle.subscribe("chatter”,10, chatterCallback);
want to unsubscribe Eiiuripé"“
¥

ros::spin() processes callbacks and will not ——

return until the node has been shutdown More info
http://wiki.ros.org/roscpp/Overview/Publishers%20and%20Subscribers

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020 38

ROSCPP Publisher

= Create a publisher with help of the node
handle

ros::Publisher publisher =
nodeHandle.advertise<message type>(topic,
queue _size);

* Create the message contents
= Publish the contents with

publisher.publish(message);

More info
http://wiki.ros.org/roscpp/QOverview/Publishers%20and%20Subscribers

talker.cpp

#include <ros/ros.h>
#include <std_msgs/String.h>

int main(int argc, char **argv) {
ros::init(argc, argv, "talker");
ros: :NodeHandle nh;

ros: :Publisher chatterPublisher =

nh.advertise<std_msgs::String>("chatter”, 1);
ros::Rate loopRate(10);

unsigned int count = @;

while (ros::ok()) {
std_msgs::String message;
message.data = "hello world "

s

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020

ROS_INFO_STREAM(message.data);

—— chatterPublisher.publish(message);

ros: :spinOnce();
loopRate.sleep();
count++;

}

return @;

}

+ std::to_string(count);

39

ROSCPP Publisher

= Create a publisher with help of the node
handle

ros::Publisher publisher =
nodeHandle.advertise<message type>(topic,
queue _size);

* Create the message contents
= Publish the contents with

publisher.publish(message);

More info
http://wiki.ros.org/roscpp/QOverview/Publishers%20and%20Subscribers

talker.cpp

#include <ros/ros.h>
#include <std_msgs/String.h>

int main(int argc, char **argv) {
ros::init(argc, argv, "talker");
ros: :NodeHandle nh;

ros: :Publisher chatterPublisher =

nh.advertise<std_msgs::String>("chatter”, 1);
ros::Rate loopRate(10);

unsigned int count = @;

while (ros::ok()) {
std_msgs::String message;
message.data = "hello world "

s

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020

ROS_INFO_STREAM(message.data);

—— chatterPublisher.publish(message);

ros: :spinOnce();
loopRate.sleep();
count++;

}

return @;

}

+ std::to_string(count);

40

ROS Launch

Example console output for
roslaunch roscpp_tutorials talker_listener.launch

= Jaunch is a tool for launching multiple nodes bone. checking log Tile disk usage. Usage 1s <1G6.
(aS Wen as SE'ttlng paramEterS) started reslaunch server http://ubuntu:37592/
= Are written in XML as *./Jaunch files

* |f not yet running, launch automatically starts

d roscore
Browse to the folder and start a launch file with " Uistener (roscpp_tt corials/Listener)
> roslaunch file name.launch auto-starting new master

process[master]: started with pid [5772]
\ \ ROS_MASTER_URI-=http://localhost:11311

Start a launch file from a package with

setting /run_id to 794321aa-e350-1le6-35db-000c297bd368

. process[rosout-1]: started with pid [5785]

> roslaunch package name file name.launch started core service [/rosout]
process[listener-2]: started with pid [5788]
process[talker-3]: started with pid [5795]

wore info [INFO] [1486 58]: hello world @
iKi [INFO] [14860¢ . he
hitp://wiki.ros.org/roslaunch [INFO] [14

[INFO] [1486

c’{,ﬂ[‘l‘ LS NTA3 @ KU Leuven 24 -28 February 2020

ROS Launch:

talker listener.launch
(<launch>) Notice the syntax difference
e name="listener" pkg="roscpp_tutorials" type="listener" output="scrae o 3 . .
e name="talker" pkg="roscpp_tutorials" type="talker" output="scree @ u for self C|DSII'IQ tags.
Z71aunch> <tag></tag> and <tag/>

= launch: Root element of the launch file

= node: Each <node> tag specifies a node to be launched

= name: Name of the node (free to choose)

= pkg: Package containing the node

= type: Type of the node, there must be a corresponding executable with the same name

= output: Specifies where to output log messages (screen: console, log: log file)
More info

http://wiki.ros.org/roslaunch/XML
http://wiki.ros.org/roslaunch/Tutorials/Roslaunch%20tips%20for%20larger%20projects

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020 42

ROS Launch:
Arguments

range world.launch (simplified)

<?xml version="1.8"?>

<launch>
. <arg name="use_sim_time" default="true"/>
= (Create re-usable launch files with <arg> tag,] <arg name="world" default="gazebo_ros_range"/>

<arg name="debug" default="false"/>
<arg name="physics" default="ode"/>

which works like a parameter (default optional)

<arg name="arg_name" default="default value"/> <group if="$(arg use_sim time)">

<param name="/use_sim_time" value="true" />
</group>

= Use arguments in launch file with —

<include file="$(find gazebo_ros)

$(arg arg_name) /launch/empty_world.launch">

<arg name="world_name" value="$(find gazebo_plugins)/
test/test_worlds/$(arg world).world"/>

* When launching, arguments can be set with <arg name="debug" value="$(arg debug)"/>
<arg name="physics" value="%$(arg physics)"/>
> roslaunch Llaunch_file.launch arg_name:=value </include>
</launch>

More info
http://wiki.ros.org/roslaunch/XML/arg

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020 43

ROS Launch:

Parameter server and YAML format

Nodes use the parameter server to store and
retrieve parameters at runtime

Best used for static data such as
configuration parameters

Parameters can be defined in launch files or
separate YAML files

List all parameters with

> rosparam list

Get the value of a parameter with
> rosparam get parameter_name

Set the value of a parameter with

> rosparam set parameter _name value

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020

config.yaml

camera:

left:
name: left_camera
exposure: 1

right:
name: right_camera
exposure: 1.1

package.launch

<launch>
<node name="name" pkg=
<rosparam command=

¢</launch>

"package"” type:“nud&_typ{:::)
"load"

file="$(find package)/config/config.yaml"™ />

More info
http://wiki.ros.org/rosparam

44

ROSCPP: Parameter server

" (Get a parameter in C++ with

ros: :NodeHandle nodeHandle("~");
std::string topic;

. if (!nodeHandle.getParam("topic”, topic)) {
= Method returns true if parameter was found, ROS_ERROR("Could not find topic

false otherwise parameter!®);

nodeHandle.getParam(parameter _name, variable)

= (Global and relative parameter access:

= (Global parameter name with preceding /

nodeHandle.getParam("/package/camera/left/exposure"”, variable)

= Relative parameter name (relative to the node handle)

nodeHandle.getParam("camera/left/exposure”, variable)
= For parameters, typically use the private node handle

ros: :NodeHandle("~") More info
http://wiki.ros.org/roscpp/Overview/Parameter%20Server

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020 4

ROSCPP: Node handle Types

For a node in namespace looking up topic,
these will resolve to:

* There are four main types of node handles

1. Default (public) node handle: /namespace/topic

nh_ = ros::NodeHandle();

2. Private node handle:
nh_private = ros::NodeHandle("~");

/namespace/node/topic

Recommended

3. Namespaced node handle:
nh_eth = ros::NodeHandle("eth");

4. Global node handle:
nh_global = ros::NodeHandle("/");

/namespace/eth/topic

/topic

More info
http://wiki.ros.org/roscpp/Overview/NodeHandles

Not
recommended

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020

ROS Services

* Request/response communication between
nodes is realized with services
= The service server advertises the service
= The service client accesses this service

= Similar in structure to messages, services ‘| Request | —1 Request
I service

. . _._____ 11 7 Moo -—--
are defined in *.srv files Response | name ["Response

Node 1 Request Node 2

Service Client Response Service Server

I
== maal

List available services with
> rosservice list

* SIv i Service definition

Call a service with the request contents Mors info
> rosservice call /service_name args http://wiki.ros.org/Services

Show the type of a service

> rosservice type /service_name

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020

ROS Actions (actionlib)

= Similar to service calls, but provide possibility to A::'
= Cancel the task (preempt) Cancel
= Receive feedback on the progress Node 1 pIE Status Node 2

= Best way to implement interfaces to time- Action Client H I SN Action Server
extended, goal-oriented behaviors - -Leedhagk.

1
P

= Similar in structure to services, action are
*action | Action definition

defined in * action files

= Internally, actions are implemented with a set of
topics

More info
http://wiki.ros.org/actionlib
http://wiki.ros.org/actionlib/DetailedDescription

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020

ROS Services and Actions Definition example

nav msqgs/GetPlan.srv

std srvs/Trigger.srv

geometry_msgs/PoseStamped start
--- —— Request —— %ecmetry_msgsfPcseStamped goal
bool success loat32 tolerance

string message [Response ~_ |, msgs/Path plan

Averaging.action

int32 samples \

oo Goal
float32 mean
float32 std_dev ~ —Resut ——__

FollowPath.action

navigation_msgs/Path path

bool success

int32 sample Feedback
float32 dgta / \ float32 remaining_distance

float32 mean float32 initial_distance
float32 std_dev

NTA3 @ KU Leuven 24 -28 February 2020

ROS Parameters, Dynamic Reconfigure, Topics, Services, and
Actions Comparison

Parameters Dynamic Services Actions

Reconfigure

Description Global constant Local, changeable Continuous data Blocking call for Non-blocking,
parameters parameters streams processing a request preemptable goal
oriented tasks

Application Constant settings Tuning parameters One-way continuous Short triggers or Task executions and
data flow calculations robot actions
Examples Topic names, camera Controller parameters Sensor data, robot Trigger change, Navigation, grasping,
settings, calibration state request state, motion execution
data, robot setup compute quantity

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020 50

Questions?

Exercises A

* Install the following Ubuntu package:

ros-kinetic-ros-tutorials
* Understand «turtlesim» package
* navigate package contents
* run different nodes
* understand the communication
architecture
* Create a separate package in your
catkin workspace able to move the
turtle on a circular trajectory
* Use roslauch to set parameters
(radius and speed)

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020

turtlesim_node

turtle_teleop key

Exercises B

Remote teleoperation of turtle bot:
* Following tutorial here:

turtlesim_node

http://wiki.ros.org/ROS/Tutorials/MultipleMachines

!

 Run the turtlesim_node and the
turtle teleop key on two different machine

* Introduce a node publishing a status message
able to change the spinning direction of the
node previously implemented (modification
requred)

A, ATLAS NTA3 @ KU Leuven 24 -28 February 2020

turtle_teleop key

http://wiki.ros.org/ROS/Tutorials/MultipleMachines

Exercises B

Implement the talker = listener
example (following C++ or python
tutorial)

Modify the code for printing the
following string «Hello world from
ESRxx counter»

Run a single listener for all the talker
implemented

L ATLAS NTA3 @ KU Leuven 24 -28 February 2020

